Structural Properties of Fair Solutions

John Hooker

Carnegie Mellon University

Joint work with

Özgün Elçi Amazon

Peter Zhang Carnegie Mellon University

INFORMS 2023

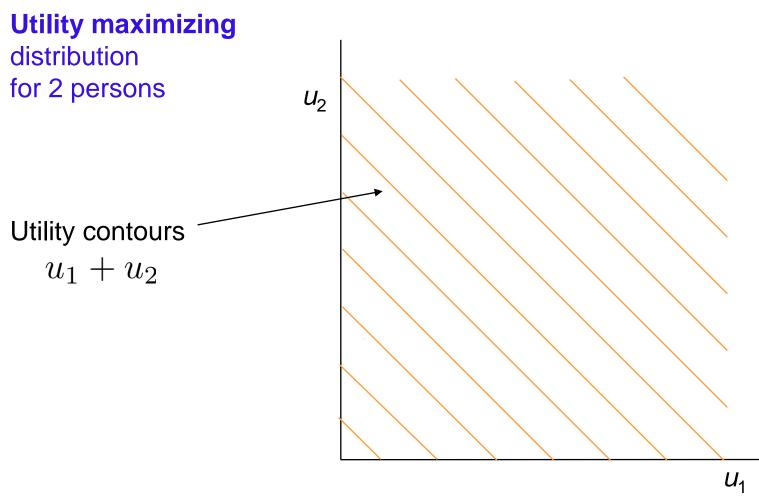
Modeling Fairness

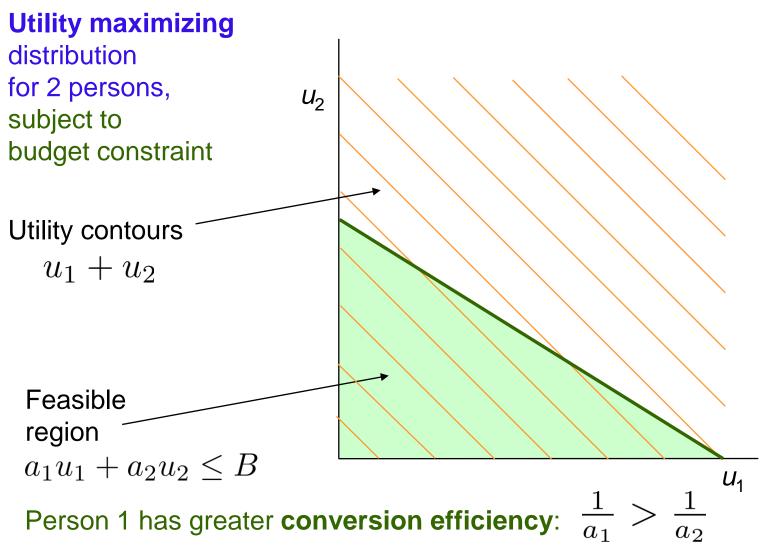
- A growing interest in incorporating **fairness** into models
 - Health care resources.
 - Facility location (e.g., emergency services, infrastructure).
 - Telecommunications.
 - Traffic signal timing
 - Disaster recovery (e.g., power restoration)

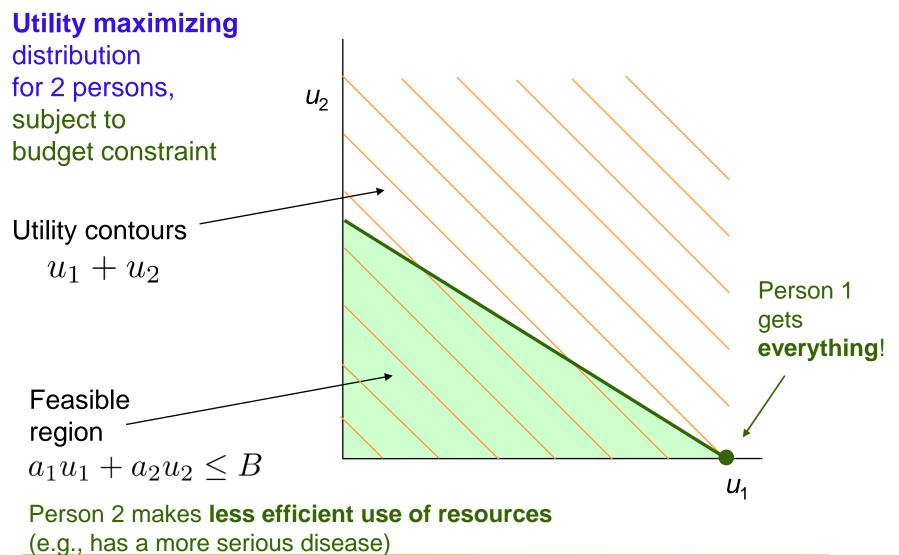
Modeling Fairness

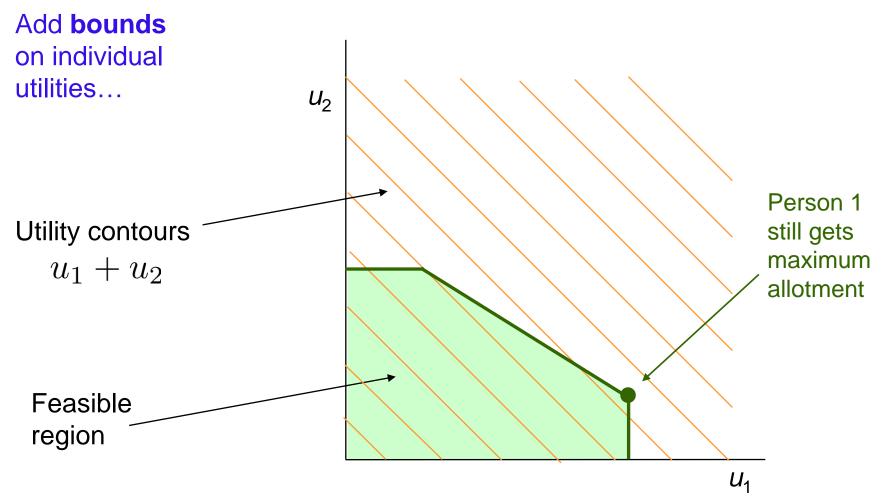
- Optimization models are normally formulated to **maximize utility**.
 - where utility = wealth, health, negative cost, etc.
 - This can lead to **very unfair** resource distribution.

• For example...









The Problem

- True, these constraints are simplistic...
 - ...and such extreme solutions rarely occur in practice.

The Problem

- True, these constraints are simplistic...
 - ...and such extreme solutions rarely occur in practice.
 - This is only because complex constraints happen to rule out extremely unfair solutions.
 - The constraints only **conceal the basic inadequacy** of the objective function!
- We need an objective function that **balances utility** and fairness.

Modeling Fairness

- There is **no one** concept of fairness.
 - The appropriate concept **depends on the context**.
- How to choose the right one?
- For each of several fairness models, we...
 - Describe the **optimal solutions** they deliver
 - Determine their implications for **hierarchical** distribution
 - Study how they incentivize efficiency improvements and competition vs. cooperation.

Modeling Fairness

- This is an *ex post* approach
 - ...as opposed to the traditional *ex ante* approach of social choice theory
 - ...which derives fairness criteria from axioms of rational choice or bargaining arguments.
 - These make strong **assumptions** that are unrealistic or difficult to assess in practice.

Generic Model

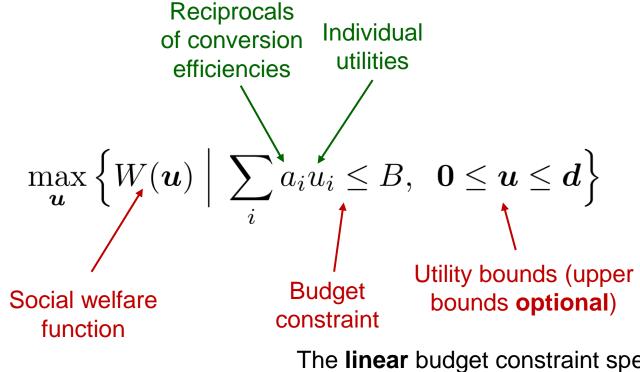
• We formulate each fairness criterion as a **social welfare** function (SWF).

$$W(\boldsymbol{u}) = W(u_1, \ldots, u_n)$$

- Measures desirability of the magnitude and distribution of utilities across individuals.
- The SWF becomes the objective function of the optimization model.

Generic Model

The social welfare optimization problem



Conversion efficiency of individual $i = 1/a_i$

The **linear** budget constraint specifies conversion efficiencies while allowing **fairness properties** to be indicated **transparently** in the SWF.

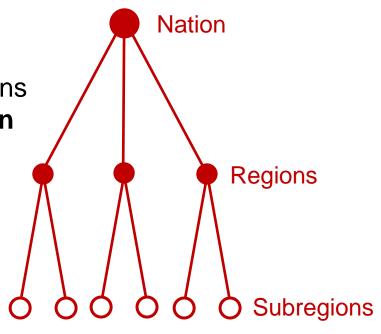
Hierarchical Distribution

Two-level hierarchy

- National authority allocates resources to regions.
- Each region combines these resources with its own resources and allocates to subregions.

Regional decomposability

- Each region's allocation to subregions is the same as in a national solution that uses the same SWF.
- Surprisingly, some SWFs are **not** regionally decomposable.



Hierarchical Distribution

Sufficient condition for regional decomposability

SWF $W(\boldsymbol{u})$ is monotonically separable when for any partition $\boldsymbol{u} = (\boldsymbol{u}^1, \boldsymbol{u}^2), W(\bar{\boldsymbol{u}}^1) \geq W(\boldsymbol{u}^1)$ and $W(\bar{\boldsymbol{u}}^2) \geq W(\boldsymbol{u}^2)$ imply $W(\bar{\boldsymbol{u}}) \geq W(\boldsymbol{u})$.

In particular, a separable SWF is monotonically separable.

Theorem.

A monotonically separable SWF is regionally decomposable.

Incentives and Sharing

My incentive rate =

% increase in my optimal utility allotment % increase in my conversion efficiency

A **positive** incentive rate indicates a reward for **improving** efficiency.

My **cross-subsidy rate** with respect to another individual =

% increase in the other individual's optimal utility allotment % increase in my conversion efficiency

Positive cross-subsidy rates indicate **cooperation**. **Negative** cross-subsidy rates indicate **competition**.

Utilitarian

Maximize total utility:

$$W(\boldsymbol{u}) = \sum_{i} \{u_i\}$$

Optimal solution subject to budget constraint:

• Most efficient person gets everything.

Regionally decomposable?

• Separable SWF \rightarrow yes.

Incentive rate?

• 1 for most efficient person, 0 for others.

Cross-subsidy rates?

• All zero

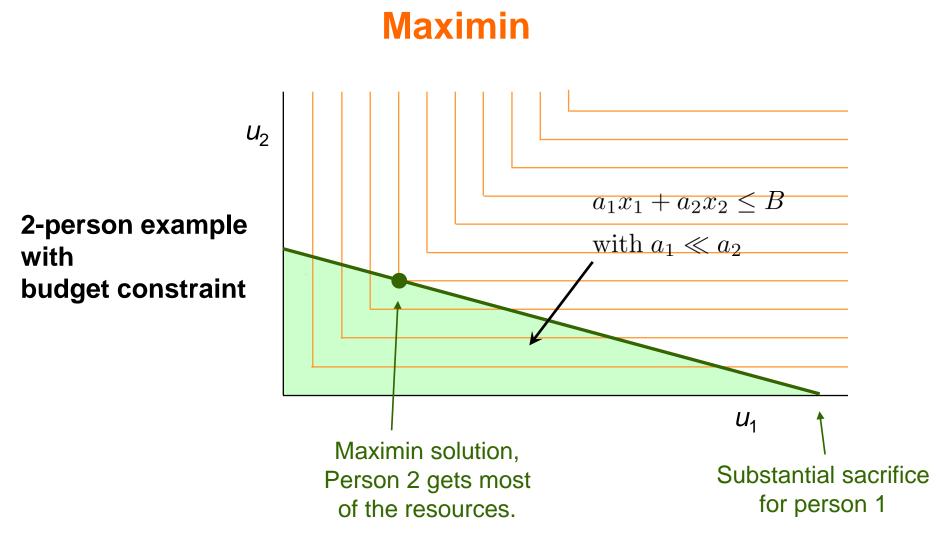
Maximin

Maximize minimum utility: $W(\boldsymbol{u}) = \min_{i} \{u_i\}$

Suggested by social contract argument for **Difference Principle** of John Rawls, which applies only to design of social institutions and distribution of "primary goods."

Optimal solution subject to budget constraint:

• Everyone gets equal utility.



In a medical context, patient 1 is reduced to same level of suffering as seriously ill patient 2.

Maximin

Maximize minimum utility: $W(\boldsymbol{u}) = \min_{i} \{u_i\}$

Suggested by social contract argument for **Difference Principle** of John Rawls, which applies only to design of social institutions and distribution of "primary goods."

Optimal solution subject to budget constraint:

• Everyone gets equal utility.

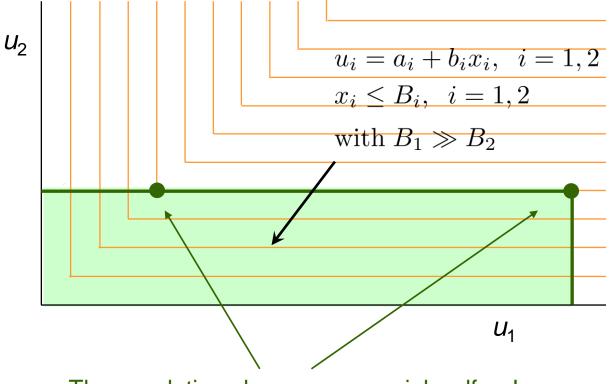
Optimal solution subject to resource bounds:

• Can waste most of the available resources.

Fairness for the Disadvantaged

Maximin

Medical example with resource bounds



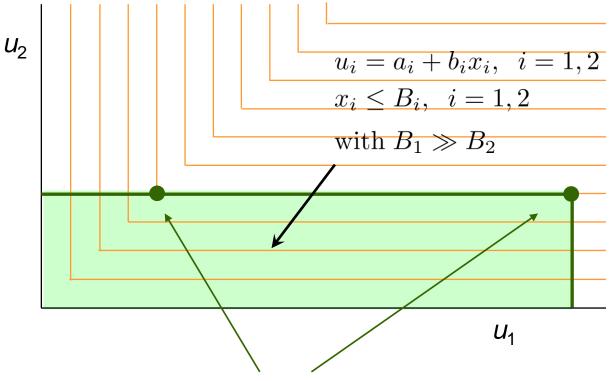
These solutions have same social welfare!

Fairness for the Disadvantaged

Maximin

Medical example with resource bounds

Remedy: use leximax solution



These solutions have same social welfare!

Maximin

Maximize minimum utility: $W(\boldsymbol{u}) = \min_{i} \{u_i\}$

Regionally decomposable?

• Monotonically separable SWF \rightarrow yes.

Incentive rate for person *i*?
$$\frac{a_i}{\sum_{j} a_j}$$

Cross-subsidy rate?

$$\frac{a_i}{\sum_j a_j}$$

• Everyone benefits equally from person *i*'s improvement.

Leximax

Maximize smallest utility, then 2nd smallest, etc.

Optimal solution subject to budget constraint:

• Everyone gets **equal** utility.

Optimal solution subject to budget constraint and bounds:

• No waste of resources.

Regionally decomposable?

• **Yes** (using generalized definition of decomposability)

Alpha Fairness

Larger $\alpha \ge 0$ corresponds to greater fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \\ \text{Mo \& Walrand 2000; Verloop, Ayesta \& Borst 2010} \end{cases}$$

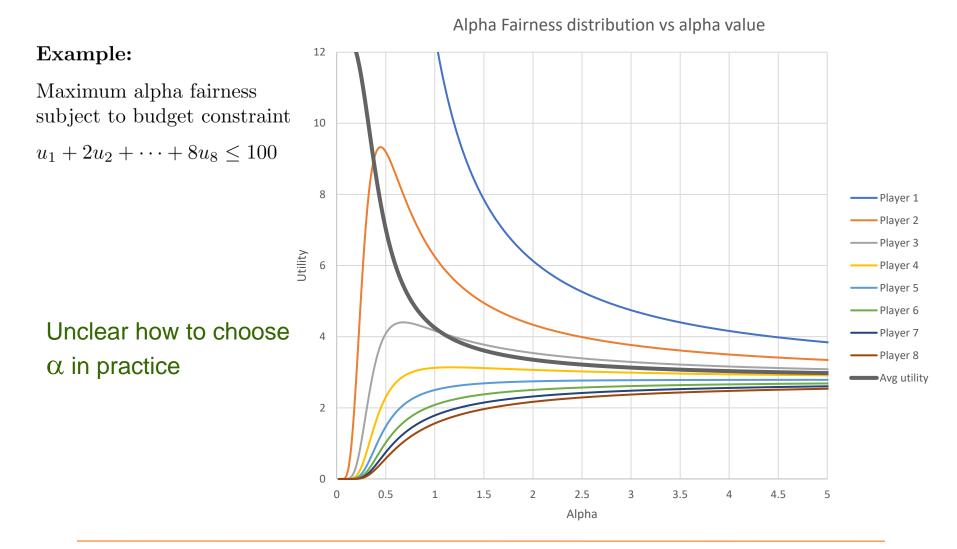
Solution subject to budget constraint:

$$u_i = \frac{B}{a_i^{1/\alpha} \sum_j a_j^{1-1/\alpha}}, \text{ all } i$$

- Utilitarian when $\alpha = 0$, maximin when $\alpha \rightarrow \infty$
- Egalitarian distribution can have same social welfare as arbitrarily extreme inequality.
- Can be **derived** from certain axioms.
 Lan & Chiang 2011

25

Alpha Fairness



Alpha Fairness

Regionally decomposable?

• Separable SWF \rightarrow yes.

Incentive rate for person *i*:
$$\frac{1}{\alpha} + \left(1 - \frac{1}{\alpha}\right) \frac{a_i^{1-1/\alpha}}{\sum_j a_j^{1-1/\alpha}}$$

• More efficient persons have greater incentive to improve efficiency when $\alpha < 1$, less incentive when $\alpha > 1$.

Cross-subsidy rates:
$$\left(1-\frac{1}{\alpha}\right)\frac{a_i^{1-1/\alpha}}{\sum_j a_j^{1-1/\alpha}}$$

- When α < 1 (competition), efficiency improvements transfer utility from other persons
- When $\alpha > 1$ (**sharing**), improvements transfer utility **to** others

Nash 1950

Special case of alpha fairness ($\alpha = 1$)

• Also known as **Nash bargaining solution**, in which case bargaining starts with a default distribution *d*.

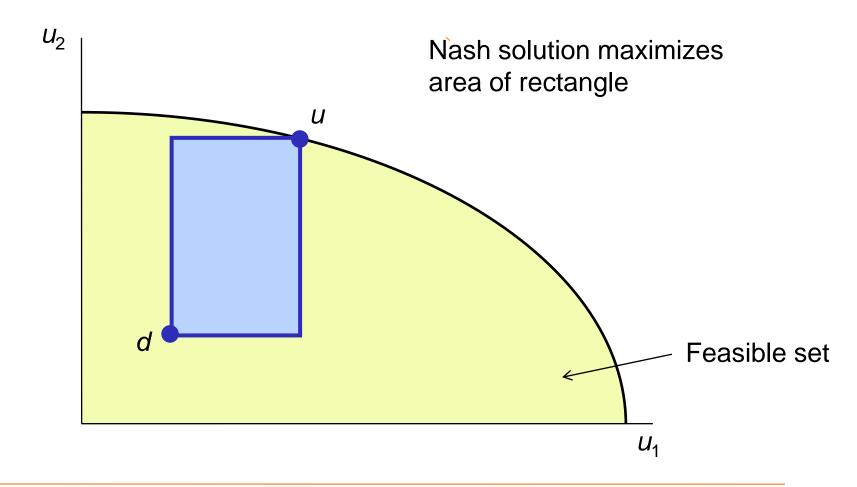
$$W(\boldsymbol{u}) = \sum_{i} \log(u_i - d_i) \text{ or } W(\boldsymbol{u}) = \prod_{i} (u_i - d_i)$$

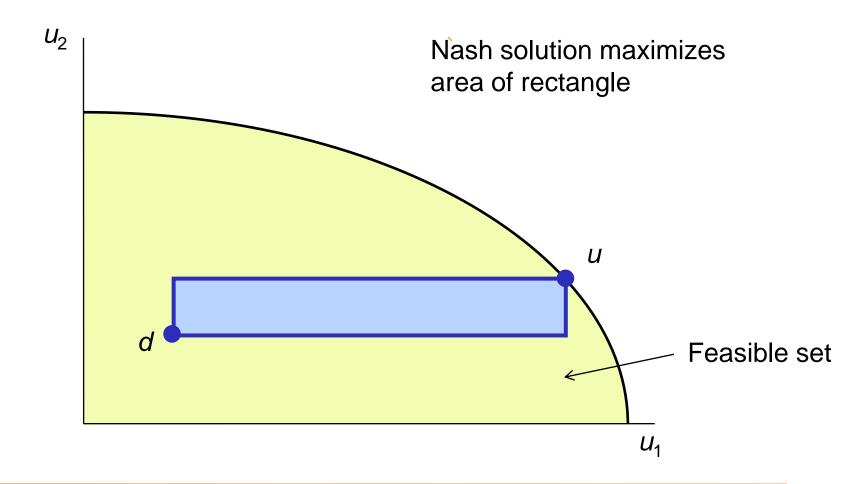
Solution subject to budget constraint

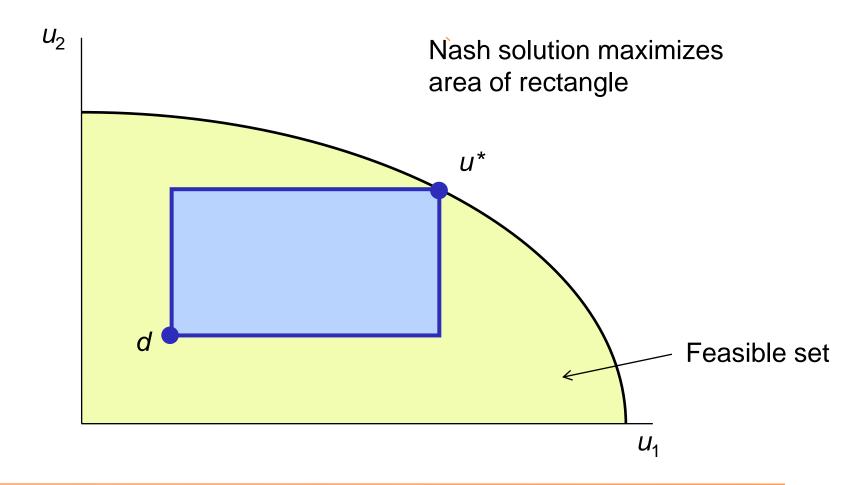
- Utility allotted in proportion to conversion efficiency.
- Can be **derived** from axiomatic and bargaining arguments.
- Used in engineering applications (telecom, traffic signaling).

Incentive rate = 1

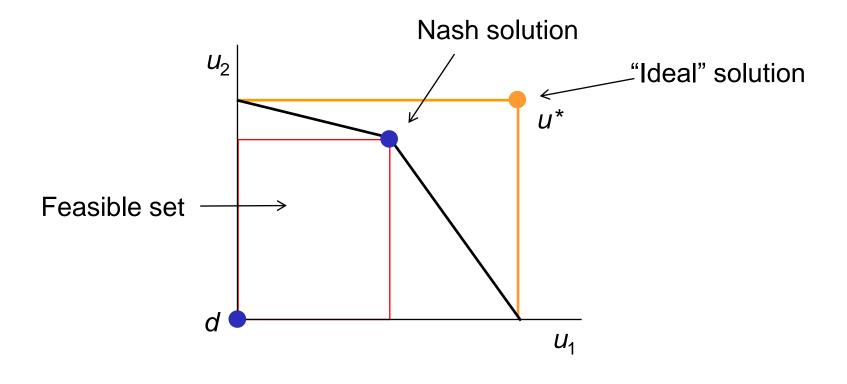
Cross-subsidy rates = 0



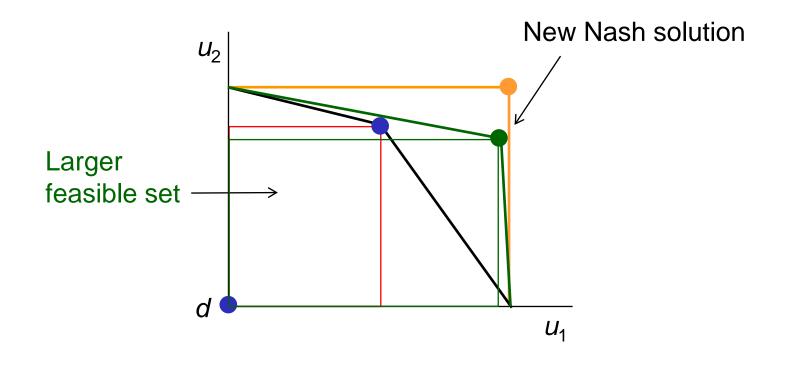




• Begins with a critique of the Nash bargaining solution.

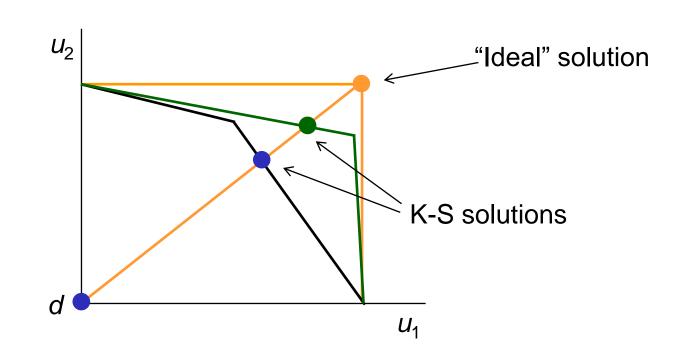


- Begins with a critique of the Nash bargaining solution.
- The new Nash solution is **worse** for player 2 even though the feasible set is **larger**.



• **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.

Kalai & Smorodinksy 1975



$$\max_{\beta, \boldsymbol{x}, \boldsymbol{u}} \left\{ \beta \mid \boldsymbol{u} = (1 - \beta)\boldsymbol{d} + \beta \boldsymbol{u}^{\max}, \ (\boldsymbol{u}, \boldsymbol{x}) \in S, \ \beta \leq 1 \right\}$$

Solution subject to budget constraint

- Same as proportional fairness.
- Seems reasonable for price or wage negotiation.
- Defended by some social contract theorists (e.g., "contractarians")

Gauthier 1983, Thompson 1994

Regionally decomposable?

- Yes, if collapsible
 - (i.e., it is never optimal for central authority to take resources from regions, which can be checked by simple algebraic test)

Threshold Methods

Combining utility and maximin

- **Utility threshold:** Use a maximin criterion until the utility cost becomes too great, then switch some to a utilitarian criterion.
 - Fairness is a primary concern, but without sacrificing too much utility.
 - As in a medical context, task assignment.

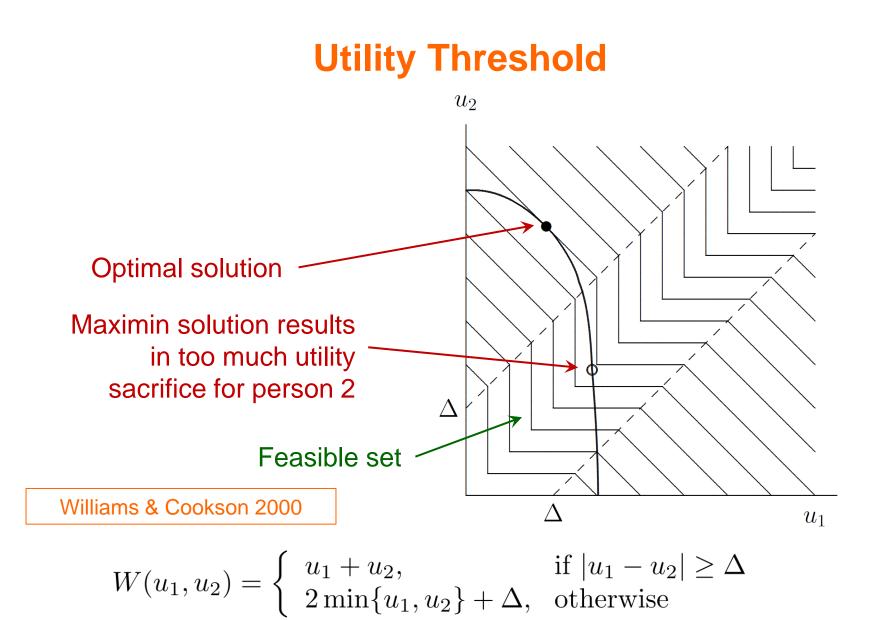
Williams & Cookson 2000

Threshold Methods

Combining utility and maximin

- **Utility threshold:** Use a maximin criterion until the utility cost becomes too great, then switch some to a utilitarian criterion.
 - Fairness is a primary concern, but without sacrificing too much utility.
 - As in a medical context, task assignment.
- **Equity threshold:** Use a utilitarian criterion until the inequity becomes too great, then switch some to a maximin criterion.
 - Use when efficiency is the primary concern, but without excessive sacrifice by any individual.
 - As in telecommunications, disaster recovery, traffic control..

Williams & Cookson 2000



Generalization to *n* persons

$$W(\boldsymbol{u}) = (n-1)\Delta + \sum_{i=1}^{n} \max\left\{u_i - \Delta, u_{\min}\right\}$$

where $u_{\min} = \min_i \{u_i\}$ JH & Williams 2012

Solution subject to budget constraint

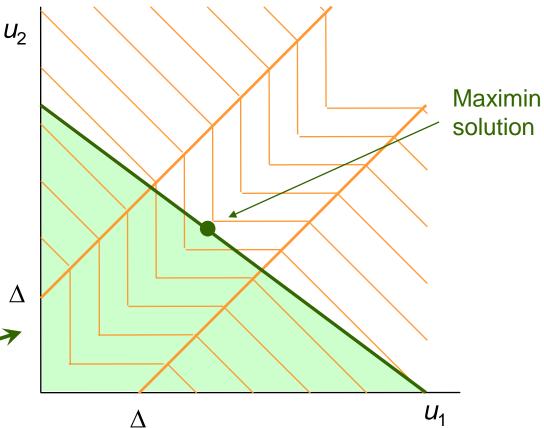
- Purely **utilitarian** for smaller values of Δ , **maximin** for larger values.
- Δ is chosen so that individuals with utility within Δ of smallest are sufficiently deprived to **deserve priority**.
- $\Delta = 0$ corresponds to utilitarian criterion, $\Delta = \infty$ to maximin.

Theorem. When maximizing the SWF subject to a **budget constraint**, the optimal solution is purely **maximin** or **purely utilitarian**.

Purely maximin if

$$\Delta \ge B\Big(\frac{1}{a_{\langle 1\rangle}} - \frac{n}{\sum_i a_i}\Big) \quad \Delta$$

Here, parties have \checkmark similar treatment costs, or Δ is large.

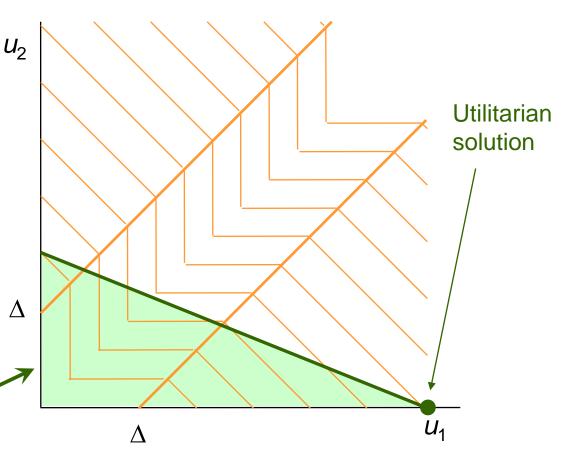


Theorem. When maximizing the SWF subject to a **budget constraint**, the optimal solution is purely **maximin** or **purely utilitarian**.

Purely utilitarian if

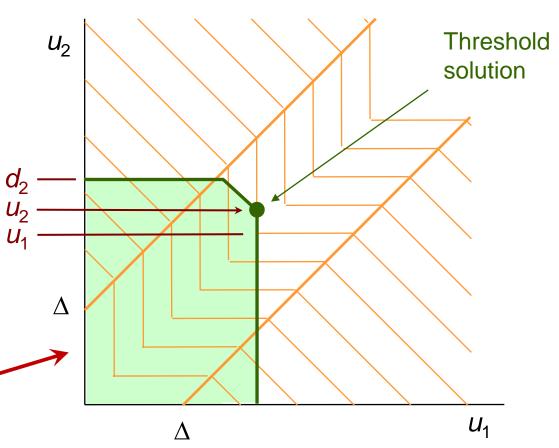
$$\Delta \le B\left(\frac{1}{a_{\langle 1\rangle}} - \frac{n}{\sum_i a_i}\right)$$

Here, parties have very different treatment costs, \checkmark or Δ is small.



Theorem. When maximizing the SWF subject to a **budget constraint and upper bounds** d_i at most one utility is **strictly between** its upper bound and the smallest utility.

Here, **one** utility u_2 is **strictly between** upper bound d_2 and - the smallest utility u_1 .

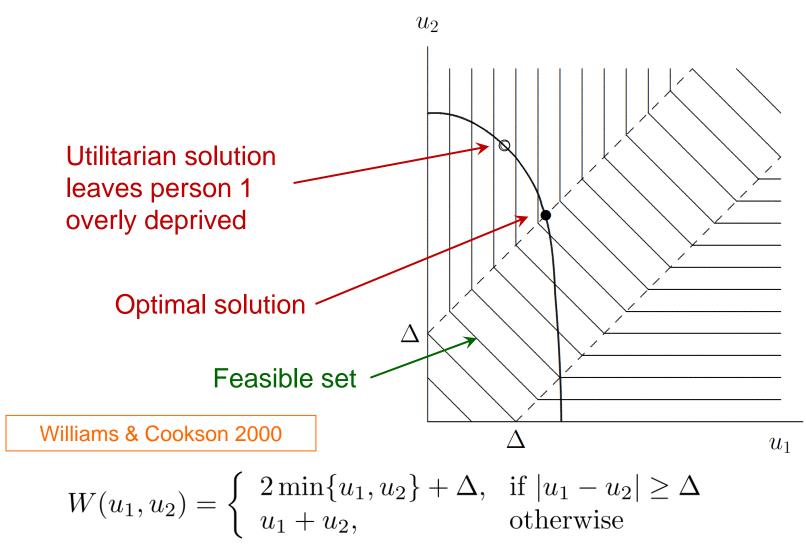


Regionally decomposable?

- No
- This could be an advantage or disadvantage.

Incentive and cross-subsidy rates:

• Same as utilitarian (for small Δ) or maximin (for large Δ)

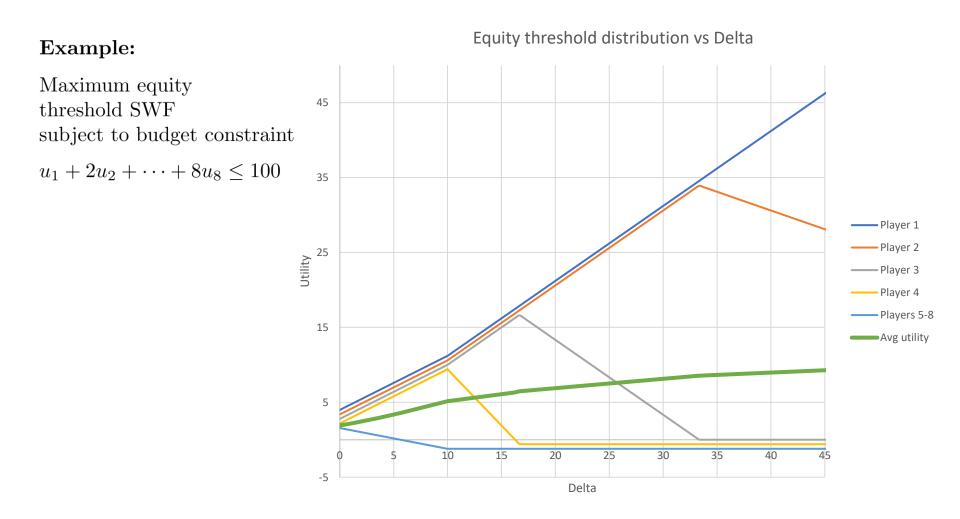


Generalization to *n* persons

$$W(\boldsymbol{u}) = n\Delta + \sum_{i=1}^{n} \min\{u_i - \Delta, u_{min}\}$$

Solution subject to budget constraint

- For large (more utilitarian) values of Δ, more efficient individuals get utility Δ, less efficient get zero.
- For small (more egalitarian) values of Δ , everyone gets something, but more efficient individuals get Δ more utility than less efficient.
- Δ is chosen so that well-off individuals **do not deserve more utility** unless utilities within Δ of smallest are also increased.
- Values **reversed**: $\Delta = \infty$ corresponds to utilitarian, $\Delta = 0$ to maximin.



Regionally decomposable?

• No

Incentive rate:

- For large (more utilitarian) Δ , rate = 1 for one person with a certain intermediate utility level, zero for others
- For **small** (more egalitarian) Δ , rate is $\overline{\sum_{j=1}^{n} a_{j}}$ for any individual *i*.

Cross-subsidy rates:

- For **large** (more utilitarian) Δ , only the **one person** with a certain intermediate utility level benefits from the improvements of others (namely, those with greater efficiencies).
- For **small** (more egalitarian) Δ , all rates are $\sum a_j$

Utility Threshold with Leximax

Combines utility and leximax to provide more sensitivity to equity.

SWFs W_1, \ldots, W_n are maximized sequentially, where W_1 is the utility threshold SWF defined earlier, and W_k for $k \ge 2$ is

$$W_{k}(\boldsymbol{u}) = \sum_{i=1}^{k-1} (n-i+1)u_{\langle i\rangle} + (n-k+1)\min\left\{u_{\langle 1\rangle} + \Delta, u_{\langle k\rangle}\right\} + \sum_{i=k}^{n} \max\left\{0, \ u_{\langle i\rangle} - u_{\langle 1\rangle} - \Delta\right\}$$
Chen & JH 2021

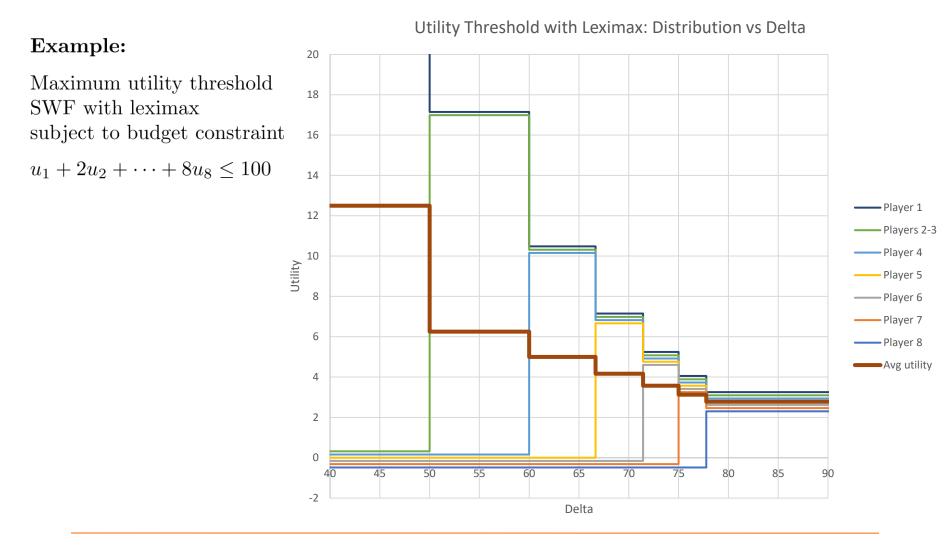
where $u_{\langle 1 \rangle}, \ldots, u_{\langle n \rangle}$ are u_1, \ldots, u_n in nondecreasing order.

Solution subject to budget constraint

- The *m* most efficient individuals receive equal utility $\sum_{j=1}^{m} a_{j}$, others zero.
- Larger Δ spreads utility over more individuals (larger *m*).

 $\frac{a_i}{m}$

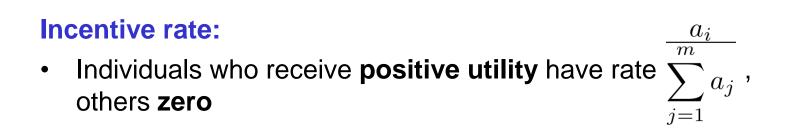
Utility Threshold with Leximax



Utility Threshold with Leximax

Regionally decomposable?

• No



Cross-subsidy rates:

• Rates among individuals who receive positive utility are $\sum_{j=1}^{n} a_j$, others are **zero**.

 $\frac{a_i}{m}$

Properties of Fair Solutions

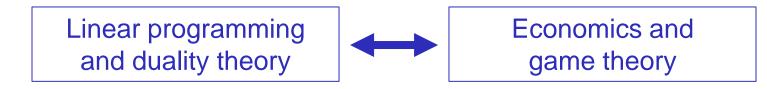
Social welfare criterion	Solution structure with simple budget constaint	Special comment	
Utilitarian	Most efficient party gets everything Traditional objective		
Maximin/leximax	Everyone gets equal utility	yone gets equal utility Leximax avoids wasting utility	
Alpha fairness	Fairness increases with α Utilitarian when $\alpha = 0$, maximin when $\alpha \rightarrow \infty$		
Kalai-Smorodinsky	Same solution as alpha fairnessUtility allotment iswith $\alpha = 1$ (proportional fairness)proportional to efficience		
Utility threshold with maximin	Purely utilitarian or maximin, depending on Δ Interesting structure with bounds are added		
Equity threshold with maximin	More efficient parties receive Δ more than less efficient parties	Least efficient parties receive zero	
Utility threshold with leximax	More efficient parties receive equal utility, others zero	For larger Δ , more parties receive utility but smaller allotment	

Properties of Fair Solutions

Social welfare criterion	Regionally decomposable?	Incentives and sharing with simple budget constaint
Utilitarian	Yes	Only most efficient party incentivized to improve efficiency, no sharing
Maximin/leximax	Yes	Less efficient parties have greater incentive to improve, benefits shared equally
Alpha fairness	Yes	Less efficient parties have greater incentive. Competitive when $\alpha < 1$, cooperative when $\alpha > \infty$
Kalai-Smorodinsky	Yes, if collapsible	Same as proportional fairness (α = 1)
Utility threshold with maximin	Νο	Same as utilitarian or maximin, depending on Δ
Equity threshold with maximin	Νο	For larger Δ , only one party incentivized to improve and receives all benefits. For smaller Δ , all are incentivized and benefit.
Utility threshold with leximax	Νο	Parties who receive positive utility are incentivized to improve and share benefits of efficiency improvement.

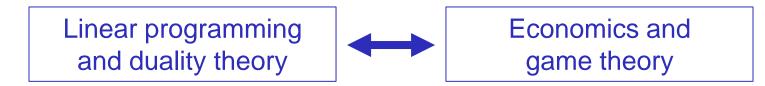
Cross-fertilization

- Research in **optimization** and **other fields** can be mutually beneficial.
- For example,



Cross-fertilization

- Research in **optimization** and **other fields** can be mutually beneficial.
- For example,



• Potentially,

Post hoc analysis of social welfare optimization

Questions or comments?