Modeling with Metaconstraints and Semantic Typing

André Ciré
University of Toronto

John Hooker
Carnegie Mellon University

Tallys Yunes
University of Miami

Monash University/NICTA, May 2014
Exploiting Problem Structure

- You can’t solve NP-hard problems without exploiting special structure.
Exploiting Problem Structure

• You can’t solve NP-hard problems without exploiting special structure.

• For SAT solvers:
 • Careful encoding of problem in SAT form
 • This has become a minor industry
Exploiting Problem Structure

• You can’t solve NP-hard problems without exploiting special structure.

• For SAT solvers:
 • Careful encoding of problem in SAT form

• For MIP solvers:
 • Careful choice of variables for tight formulation
 • Addition of valid inequalities
 • SOS1, SOS2, symmetry-breaking constraints, etc.
 • Solver parameters (e.g., which cuts?)
Conveying structure to the solver(s)

• Formulate problem with global constraints or metaconstraints to reveal structure
• Automatically convert these to optimal formulation for the solvers(s)
 • Best choice of variables.
 • Reformulation of constraints.
 – For effective propagation or tight relaxation
• Best choice of domain filters.
• Generation of valid inequalities
Conveying structure to the solver(s)

- Formulate problem with global constraints or metaconstraints to reveal structure
- Automatically convert these to optimal formulation for the solvers(s)
 - Best choice of variables.
 - Reformulation of constraints.
 - For effective propagation or tight relaxation
 - Best choice of domain filters.
 - Generation of valid inequalities
- However, metaconstraints pose a fundamental problem of variable management…
Variable management problem

- Reformulation typically introduces new variables
 - Different metaconstraints may introduce variables that are functionally the same variable
 - …or related in some other way.
 - Recognizing these relationships is essential to obtaining a good model (e.g., a tight continuous relaxation)
 - How can the solver “understand” what is going on in the model?
Variable management problem

• Reformulation typically introduces **new variables**
 • Different metaconstraints may introduce variables that are functionally **the same variable**
 • …or related in some other way.
• Recognizing these relationships is essential to obtaining a good model (e.g., a tight continuous relaxation)
• How can the solver “understand” what is going on in the model?
• Proposal: Model with **semantic typing of variables**.
Semantic typing

• **Semantic typing** assigns a different meaning to each variable…

 • By associating the variable with a multi-place *predicate* and *keyword*.

 • The keyword “*queries*” the relation denoted by the predicate.

• Advantage:

 • This allows the solver to *deduce relationships* between variables, both original or introduced.

 • It is also good modeling practice.
How variables are introduced

• The solver may reformulate a constraint containing **general integer variable** x_i in terms of 0-1 variables y_{ij}, where

$$x_i = \sum_j jy_{ij}$$

• y_{ij}s may be **equivalent to other variables that appear** in the model or reformulations of other constraints.
How variables are introduced

• A model may include **two formulations** of the problem that use related variables.

 • Common in CP, because it strengthens **propagation**.
How variables are introduced

• A model may include **two formulations** of the problem that use related variables.

 • Common in CP, because it strengthens **propagation**.

 • For example,

\[
\begin{align*}
 x_i &= \text{job assigned to worker } i \\
 y_j &= \text{worker assigned to job } j
\end{align*}
\]

• Solver should generate **channeling constraints** to relate the variables to each other:

\[
\begin{align*}
 j &= x_{y_j}, \quad i = y_{x_i}
\end{align*}
\]
How variables are introduced

• The solver may reformulate a disjunction of linear systems

\[\bigcup_{k} A_k x \geq b^k \]

using a convex hull (or big-M) formulation:

\[A_k x^k \geq b^k y_k, \quad \text{all } k \]

\[x = \sum_k x^k, \quad \sum_k y_k = 1 \]

\[y_k \in \{0,1\}, \quad \text{all } k \]

• Other constraints may be based on same set of alternatives, and corresponding auxiliary variables \((y_k\text{ etc.})\) should be equated.
How variables are introduced

• A nonlinear or global solver may use **McCormick factorization**
 to replace nonlinear subexpressions with auxiliary variables

 • … to obtain a linear relaxation.
How variables are introduced

• A nonlinear or global solver may use **McCormick factorization** to replace nonlinear subexpressions with auxiliary variables

 • … to obtain a linear relaxation.

 • For example, bilinear term xy can be linearized by replacing it with new variable z and constraints

 $$
 L_y x + L_x y - L_x L_y \leq z \leq L_y x + U_x y - L_x U_y \\
 U_y x + U_x y - U_x U_y \leq z \leq U_y x + L_x y - U_x L_y
 $$

 where $x \in [L_x, U_x], \ y \in [L_y, U_y]$

 • Factorization of different constraints may create variables for identical subexpressions.

 • They should be identified to get a tight relaxation.
How variables are introduced

• The solver may reformulate different global constraints from CP by introducing variables that have the same meaning.
How variables are introduced

• The solver may reformulate different **global constraints** from CP by introducing variables that have the same meaning.

 • For example, **sequence** constraint limits how many jobs of a given type can occur in given time interval:

 \[
 \text{sequence}(x), \quad x_i = \text{job in position } i
 \]

 and **cardinality** constraint limits how many times a given job appears

 \[
 \text{cardinality}(x), \quad x_j = \text{job in position } j
 \]

Both may introduce variables

 \[
 y_{ij} = 1 \text{ when job } j \text{ occurs in position } i
 \]

that should be identified.
How variables are introduced

• The solver may introduce equivalent variables while interpreting metaconstraints designed for **classical MIP modeling situations:**
 • Fixed-charge network flow
 • Facility location
 • Lot sizing
 • Job shop scheduling
 • Assignment (3-dim, quadratic, etc.)
 • Piecewise linear
Motivating example

- Allocate 10 advertising spots to 5 products

\[x_i = \text{how many spots allocated to product } i \]

\[y_{ij} = 1 \text{ if } j \text{ spots allocated to product } i \]
Motivating example

- Allocate 10 advertising spots to 5 products

\[x_i = \text{how many spots allocated to product } i \]

\[y_{ij} = 1 \text{ if } j \text{ spots allocated to product } i \]

\[\leq 4 \text{ spots per product} \]
Motivating example

- Allocate 10 advertising spots to 5 products

\[x_i = \text{how many spots allocated to product } i \]

\[y_{ij} = 1 \text{ if } j \text{ spots allocated to product } i \]

\[\leq 4 \text{ spots per product} \]

Advertise \(\leq 3 \) products
Motivating example

- Allocate 10 advertising spots to 5 products

\[x_i = \text{how many spots allocated to product } i \]
\[y_{ij} = \text{1 if } j \text{ spots allocated to product } i \]

\[\leq 4 \text{ spots per product} \]
\[\text{Advertise } \leq 3 \text{ products} \]
\[\geq 4 \text{ spots for at least one product} \]
Motivating example

- Allocate 10 advertising spots to 5 products

\[x_i = \text{how many spots allocated to product } i \]
\[y_{ij} = 1 \text{ if } j \text{ spots allocated to product } i \]

\[\leq 4 \text{ spots per product} \]
\[\text{Advertise } \leq 3 \text{ products} \]
\[\geq 4 \text{ spots for at least one product} \]

\[P_{ij} = \text{profit from allocating } j \text{ spots to product } i \]

Objective:
maximize profit
Motivating example

\begin{verbatim}
spots in {0..4}
product in {A,B,C,D,E}
\end{verbatim}

Index sets
Motivating example

spots in \(\{0..4\} \)
product in \(\{A,B,C,D,E\} \)

\[\text{data } P\{\text{product,spots}\}\] Data input
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data P\{product,spots\}
\[x[i]\] is how many spots allocate\(\text{(product i)}\)

Declaration of variable \(x_i\)
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data P\{product,spots\}
x[i] is how many spots allocate(product i)

This makes it a variable declaration
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data P\{product,spots\}
\[x[i] \text{ is } \text{howmany spots allocate}(\text{product i}) \]

Declaration of variable \(x_i \)

This is the semantic type
Motivating example

spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
x[i] is **howmany** spots allocate(product i)

Indicates an integer quantity

Other keywords:
 howmuch
 whether
Motivating example

spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
x[i] is how many spots allocate(product i)
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \ P\{product,spots\}
x[i] is how many spots \textbf{allocate}(product \ i)

\textit{Declaration of variable} \(x_i\)

\textit{2-place predicate} associated with variable \(x\)

Every variable is associated with a predicate that gives it meaning
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data P\{product,spots\}
\(x[i]\) is how many spots are allocated to \(product_i\)

Declaration of variable \(x_i\)

Other term of the predicate
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data P\{product,spots\}
\(x[i]\) is how many spots allocate(product \(i\))

Declaration of variable \(x_i\)

Associates
index of \(x[i]\) with
index set product
Motivating example

\[\text{max } \sum_{i} P_{ix_i} \]

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \text{P\{product,spots\}}
x[i] is how many spots allocate(product i)
maximize sum{product i} P[i,x[i]] \text{ Objective function}
Motivating example

\[
\begin{align*}
\text{max} & \sum_i P_{ix_i} \\
\sum_i x_i & \leq 10
\end{align*}
\]

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \ P\{\text{product,spots}\}
x[i] \text{ is howmany spots allocate(product } i)\\
\text{maximize sum}\{\text{product } i\} \ P[i,x[i]]\\
\text{sum}\{\text{product } i\} \ x[i] \leq 10 \quad \text{10 spots available}
Motivating example

\[
\begin{align*}
\text{max} & \quad \sum_i P_{ix_i} \\
\sum_i x_i & \leq 10
\end{align*}
\]

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \(P\{\text{product}, \text{spots}\}\)
\(x[i]\) is how many spots allocate \(\text{product }i\)
maximize \(\text{sum}\{\text{product }i\} \ P[I,x[i]]\)
\(\text{sum}\{\text{product }i\} x[i] \leq 10\)
\(y[i,j]\) is \text{whether} allocate \(\text{product }i, \text{spots }j\)

Indicates 0-1 variable

Declare \(y_{ij}\)
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \(P\{\text{product, spots}\} \)
x\[i\] is how many spots allocate(product \(i \))
maximize \(\sum \{\text{product } i\} \ P[i,x[i]] \)
\(\sum \{\text{product } i\} \ x[i] \leq 10 \)
y\[[i,j]\] is whether allocate(product \(i \), spots \(j \))

\[
\begin{align*}
\text{max} & \quad \sum_i P_{ix_i} \\
\sum_i x_i & \leq 10
\end{align*}
\]
Motivating example

\[
\begin{align*}
\text{max} & \quad \sum_i P_{ix_i} \\
\sum_i x_i & \leq 10, \quad \sum_i y_{i0} \geq 2
\end{align*}
\]

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \ P\{\text{product,spots}\}
x[i] \ is \ how\ many \ spots \ allocate(\text{product } i)
maximize \ \sum\{\text{product } i\} \ P[i,x[i]]
\sum\{\text{product } i\} \ x[i] \leq 10
y[i,j] \ is \ whether \ allocate(\text{product } i, \ \text{spots } j)
\sum\{\text{product } i\} \ y[i,0] \geq 2 \quad \text{At most 3 products advertised}
Motivating example

\[
\begin{align*}
\text{max } & \sum_i P_{ix_i} \\
\sum_i x_i & \leq 10, \quad \sum_i y_{i0} \geq 2, \quad \sum_i y_{i4} \geq 1
\end{align*}
\]

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \text{P\{product,spots\}}
x[i] is how many spots allocate(\text{product i})
maximize \sum\{product i\} \text{P[i,x[i]]}
\sum\{product i\} x[i] \leq 10
y[i,j] is whether allocate(\text{product i, spots j})
\sum\{product i\} y[i,0] \geq 2
\sum\{product i\} y[i,4] \geq 1 \quad \text{At least 1 product gets } \geq 4 \text{ spots}
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \ P\{product,spots\}
x[i] is how many spots allocate(product i)
maximize sum\{product i\} P[i,x[i]]
sum\{product i\} x[i] <= 10
y[i,j] is whether allocate(product i, spots j)
sum\{product i\} y[i,0] >= 2
sum\{product i\} y[i,4] >= 1
\{product i\} sum\{spots j\} y[i,j] = 1
\{product i\} x[i] = sum\{spots j\} j*y[i,j]

Solver generates linking constraints because
\ x[i] and \ y[i,j] are associated with the same predicate.
Motivating example

spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
x[i] is how many spots allocate (product i)
maximize sum{product i} P[i,x[i]]

This constraint must be linearized. Solver generates

\[\max \sum_i P_{ix_i}\]
\[\sum_i x_i \leq 10, \sum_i y_{i0} \geq 2, \sum_i y_{i4} \geq 1\]
\[\sum_j y_{ij} = 1, x_i = \sum_j jy_{ij}, \text{ all } i\]

\[z_i = \sum_{j=0}^{4} P_{ij}y_{ij}', \sum_{j=0}^{4} y_{ij}' = 1, x_i = \sum_{j=0}^{4} jy_{ij}', \text{ all } i\]

y'[i,j] is whether allocate(product i, spots j)
Motivating example

spots in \{0..4\}
product in \{A,B,C,D,E\}
data \text{P\{product,spots\}}
x[i] is how many spots allocate (product i)
maximize sum\{product i\} \text{P[i,x[i]]}

This constraint must be linearized. Solver generates

\[z_i = \sum_{j=0}^{4} P_{ij} y'_j, \quad \sum_{j=0}^{4} y'_j = 1, \quad x_i = \sum_{j=0}^{4} j y'_j, \text{ all } i \]

\(y'_[i,j] \) is whether allocate(product i, spots j)
y and \(y' \) are identified because they have the same type:
y[i,j] is whether allocate(product i, spots j)
Predicates and relations

Predicate *allocate* denotes 2-place *relation* (set of tuples). Schematically indicated by:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>spots</td>
</tr>
<tr>
<td>i</td>
<td>x_i</td>
</tr>
</tbody>
</table>
Predicates and relations

Predicate `allocate` denotes 2-place relation (set of tuples). Schematically indicated by:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>product</code></td>
<td><code>spots</code></td>
<td></td>
</tr>
<tr>
<td><code>i</code></td>
<td>X_i</td>
<td></td>
</tr>
</tbody>
</table>

Column corresponding to a variable must be a **function** of other columns.
Predicates and relations

Predicate **allocate** denotes 2-place **relation** (set of tuples). Schematically indicated by:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>spots</td>
</tr>
<tr>
<td>i</td>
<td>x_i</td>
</tr>
</tbody>
</table>

Declaration of $x[i]$ as

howmany spots allocate (product i)

and $y[i,j]$ as

whether allocate (product i, spots j)

query the relation for how many and whether.
Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples). Schematically indicated by:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>spots</td>
</tr>
<tr>
<td>(i)</td>
<td>(x_i)</td>
</tr>
</tbody>
</table>

Declaration of \(x[i] \) as

howmany spots allocate (product \(i \))

and \(y[i,j] \) as

whether allocate (product \(i \), spots \(j \))

query the relation for how many and whether.

In general, **keywords** are **queries** (analogous to relational database)
Predicates and relations

Relation table reveals channeling constraints. For example,

\[x[i] \text{ is which job assign(worker i)} \]
\[y[j] \text{ is which worker assign(job i)} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>job</td>
<td>job</td>
<td>worker</td>
</tr>
<tr>
<td>j, x_i</td>
<td>i, y_j</td>
<td></td>
</tr>
</tbody>
</table>

We can read off the channeling constraints

\[j = x_i = x_{y_i} \]
\[i = y_j = y_{x_i} \]
Predicates and relations

If several jobs can be assigned to a worker, we declare

\[z[i] \text{ is whichset job assign(worker i)} \]

The channeling constraints are

\[j \in Z_{y_i} \]
Previous work

- **Model management** uses semantic typing to help combine models and use inheritance.
 - Originally inspired by object-oriented programming
 Bradley & Clemence (1988)
 - *Quiddity*: a rigorous attempt to analyze conditions for variable identification
 Bhargava, Kimbrough & Krishnan (1991)
 - **SML** uses typing in a structured modeling framework
 Geoffrion (1992)
 - **Ascend** uses strongly-typed, object-oriented modeling
 Bhargava, Krishnan & Piela (1998)
Previous work

• Our semantic typing differs:
 • Less ambitious because it doesn’t attempt model management.
 • There is only one model.
 • More ambitious because we recognize relationships other than equivalence.
 • We manage variables introduced by solver.
Previous work

• Modeling systems that convey some structure to solver:
 • All CP modelers (OPL, CHIP, etc.) use global constraints.
 • AIMMS uses typed index sets.
 • Zinc/MiniZinc (G12 system) reformulates metaconstraints for specific solvers.
 • OPL, Xpress-Kalis, Comet, etc., use interval variables.
 • SAT solver SymChaff uses high-level AI planning language PDDL.
 • Lopes and Fourer (2009) use UML (Unified Modeling Language) to model multistage stochastic LPs with recourse.
 • SIMPL has full metaconstraint capability.
Previous work

• However, none of these systems deals systematically with the variable management problem.

 • We address it with semantic typing of variables.
Assignment problem

\[
\min \sum_{i} c_{ix_i} \quad \text{alldiff} \left(x_1, \ldots, x_n \right)
\]

worker in \{1..m\}
job in \{1..n\}
data \ C\{\text{worker,job}\}
x[i] is which job assign(\text{worker i})
minimize \ \text{sum} \{\text{worker i}\} \ C[i,x[i]]
alldiff\{x[*]\}
Assignment problem

\[
\min \sum_{i} c_{ix_i} \quad \text{alldiff} \ (x_1, \ldots, x_n)
\]

worker in \{1..m\}
job in \{1..n\}
data \ C\{\text{worker,job}\}
\(x[i]\) is which job assign(\text{worker i})
minimize sum{worker i} \ C[i, x[i]]
alldiff{x[*]}\]

Objective function is formulated
\[
\max \sum_{i} c_{ij} y_{ij}, \ x_i = \sum_{j} y_{ij}, \ \text{all} \ i
\]
y[i,j] is whether assign(\text{worker i, job j})
Assignment problem

\[
\min \sum_i c_{ix_i} \\
\text{alldiff} \left(x_1, \ldots, x_n \right)
\]

worker in \{1..m\}
job in \{1..n\}
data \ C\{\text{worker}, \text{job}\}
\(x[i] \) is which job assign(\text{worker } i)
minimize \sum_{\text{worker } i} \ C[i, x[i]]
\text{alldiff}\{x[*]\}

Objective function is formulated
\[
\max \sum_i c_{ij} y_{ij}, \ x_i = \sum_j y_{ij}, \text{ all } i
\]
y[i,j] is whether assign(\text{worker } i, \text{ job } j)

Alldiff is formulated
\[
\sum_j y'_{ij} = 1, \text{ all } i, \sum_i y'_{ij} = 1, \text{ all } j, \ x_i = \sum_j jy'_{ij}, \text{ all } i
\]
y'[i,j] is whether assign(\text{worker } i, \text{ job } j)

Solver identifies \(y \) and \(y' \) to create classical AP.
Latin squares

\[
\begin{array}{ccc}
 i & j \\
 \hline \\
 2 & 3 & 1 \\
 3 & 1 & 2 \\
 1 & 2 & 3 \\
\end{array}
\]

Numbers in every row and column are distinct.
We will use **three** formulations to improve propagation.
Latin squares

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

\[
\begin{array}{ccc}
 2 & 3 & 1 \\
 3 & 1 & 2 \\
 1 & 2 & 3 \\
\end{array}
\]

\(\text{row, col, num in } \{1..n\}\)
\(x[i,j] \text{ is which num assign(row } i, \text{ col } j)\)
\(y[i,k] \text{ is which col assign(row } i, \text{ num } k)\)
\(z[j,k] \text{ is which row assign(col } j, \text{ num } k)\)

\(\text{alldiff}(x_{i1}, \ldots x_{in}), \text{ all } i\)
\(\text{alldiff}(x_{1j}, \ldots x_{nj}), \text{ all } j\)
\(\text{alldiff}(y_{i1}, \ldots y_{in}), \text{ all } i\)
\(\text{alldiff}(y_{1k} \ldots y_{nk}), \text{ all } k\)
\(\text{alldiff}(z_{j1}, \ldots x_{jn}), \text{ all } j\)
\(\text{alldiff}(z_{1k}, \ldots x_{nk}), \text{ all } k\)
Latin squares

Numbers in every row and column are distinct.
We will use **three** formulations to improve propagation.

\[
\begin{array}{ccc}
 & j & \\
 i & 2 & 3 & 1 \\
 3 & 1 & 2 \\
 1 & 2 & 3 \\
\end{array}
\]

\[
\text{row}, \text{col}, \text{num} \text{ in } \{1..n\}
\]

\[
x[i,j] \text{ is which num assign(row i, col j)}
\]

\[
y[i,k] \text{ is which col assign(row i, num k)}
\]

\[
z[j,k] \text{ is which row assign(col j, num k)}
\]

\[
\{\text{row } i\} \text{ alldiff}\{x[i,*]\}; \{\text{col } j\} \text{ alldiff}\{x[*,j]\}
\]

\[
\{\text{row } i\} \text{ alldiff}\{y[i,*]\}; \{\text{num } k\} \text{ alldiff}\{y[*,j]\}
\]

\[
\{\text{col } j\} \text{ alldiff}\{z[j,*]\}; \{\text{num } k\} \text{ alldiff}\{z[*,k]\}
\]

alldiff\((x_{i1},\ldots,x_{in}), \text{ all } i\)

alldiff\((x_{1j},\ldots,x_{nj}), \text{ all } j\)

alldiff\((y_{i1},\ldots,y_{in}), \text{ all } i\)

alldiff\((y_{1k} \ldots y_{nk}), \text{ all } k\)

alldiff\((z_{j1},\ldots,z_{jn}), \text{ all } j\)

alldiff\((z_{1k},\ldots,z_{nk}), \text{ all } k\)
Latin squares

The predicate `assign` denotes the 3-place relation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>num</td>
<td>col</td>
<td>row</td>
<td></td>
</tr>
<tr>
<td>k, x_{ij}</td>
<td>j, y_{ik}</td>
<td>i, z_{jk}</td>
<td></td>
</tr>
</tbody>
</table>

row, col, num in \{1..n\}

$x[i,j]$ is which num assign(row i, col j)

$y[i,k]$ is which col assign(row i, num k)

$z[j,k]$ is which row assign(col j, num k)

\{row i\} alldiff\{x[i,*]\}; \{col j\} alldiff\{x[*,j]\}

\{row i\} alldiff\{y[i,*]\}; \{num k\} alldiff\{y[*,j]\}

\{col j\} alldiff\{z[j,*]\}; \{num k\} alldiff\{z[*,k]\}
Latin squares

The predicate \texttt{assign} denotes the 3-place relation

\[k = x_{z_{jk}y_{ik}}, \quad j = y_{z_{jk}x_{ij}}, \quad i = z_{y_{ik}x_{ikj}}, \quad \text{all } i, j, k \]

which can be propagated.
Latin squares

The 3 formulations generate 3 identical MIP models:

\[x_{ij} = \sum_k k \delta_{ijk}^x; \sum_k \delta_{ijk}^x = 1, \text{ all } i, j; \sum_i \delta_{ijk}^x = 1, \text{ all } i, k; \sum_j \delta_{ijk}^x = 1, \text{ all } j, k \]

\[y_{ik} = \sum_j j \delta_{ijk}^y; \sum_j \delta_{ijk}^y = 1, \text{ all } i, k; \sum_i \delta_{ijk}^y = 1, \text{ all } i, j; \sum_j \delta_{ijk}^y = 1, \text{ all } j, k \]

\[z_{jk} = \sum_i i \delta_{ijk}^z; \sum_i \delta_{ijk}^z = 1, \text{ all } j, k; \sum_j \delta_{ijk}^z = 1, \text{ all } i, j; \sum_i \delta_{ijk}^z = 1, \text{ all } i, k \]
Latin squares

\{row \ i\} \ \textit{alldiff}\{x[i,*]\}); \ \{col \ j\} \ \textit{alldiff}\{x[* ,j]\})
\{row \ i\} \ \textit{alldiff}\{y[i,*]\}); \ \{num \ k\} \ \textit{alldiff}\{y[* ,j]\})
\{col \ j\} \ \textit{alldiff}\{z[j,*]\}); \ \{num \ k\} \ \textit{alldiff}\{z[* ,k]\})

The 3 formulations generate 3 identical MIP models:

\[x_{ij} = \sum_{k} k \delta_{ij k}^x; \sum_{k} \delta_{ij k}^x = 1, \ \text{all} \ i,j; \sum_{j} \delta_{ijk}^x = 1, \ \text{all} \ i,k; \sum_{i} \delta_{ijk}^x = 1, \ \text{all} \ j,k \]

\[y_{ik} = \sum_{j} j \delta_{ijk}^y, \sum_{j} \delta_{ijk}^y = 1, \ \text{all} \ i,k; \sum_{i} \delta_{ijk}^y = 1, \ \text{all} \ i,j; \sum_{j} \delta_{ijk}^y = 1, \ \text{all} \ j,k \]

\[z_{jk} = \sum_{i} i \delta_{ijk}^z, \sum_{i} \delta_{ijk}^z = 1, \ \text{all} \ j,k; \sum_{k} \delta_{ijk}^z = 1, \ \text{all} \ i,j; \sum_{j} \delta_{ijk}^z = 1, \ \text{all} \ i,k \]

The solver declares \(\delta_{ijk}^x, \delta_{ijk}^y, \delta_{ijk}^z \)

\textit{whether} \textit{assign}(row \ i, \ col \ j, \ num \ k)

So it treats them as the same variable and generates only 1 MIP model.
Multiple \textbf{which} variables

In general, an n-place predicate that denotes the relation

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
1 & \ldots & k & $k+1$ & \ldots & n \\
\hline
term_1 & \ldots & term_k & term_{k+1} & \ldots & term_n \\
\hline
$i_1, x_{i(1)}^1$ & \ldots & $i_k, x_{i(k)}^k$ & i_{k+1} & \ldots & i_n \\
\hline
\end{tabular}
\end{center}

for \textbf{which} variables, where $i(j) = i_1 \cdots i_{j-1} i_{j+1} \cdots i_n$

generates the channeling constraints

\[i_j = x_{i(1)}^j \cdots x_{i(j-1)}^{i-1} x_{i(j+1)}^{j+1} \cdots x_{i(k)}^k i_{k+1} \cdots i_n, \text{ all } i_1, \ldots, i_n, \ j = 1, \ldots, k \]
Multiple whether variables

whether keywords serve as projection operators on the relation.

\[y[i,j,d] \text{ is } \text{whether assign}(\text{worker } i, \text{ job } j, \text{ day } d) \]

Project out \(d \):

\[y1[i,j] \text{ is } \text{whether assign}(\text{worker } i, \text{ job } j) \]

Project out \(j \) and \(d \):

\[y2[i] \text{ is } \text{whether assign}(\text{worker } i) \]
Short forms

Declare x_i to be cost of activity i:

$x[i]$ is *howmuch* cost(activity i)

which is short for the formal declaration

$x[i]$ is *howmuch* cost cost(activity i)

in which a new term *cost* is generated

Declare x to be cost:

x is *howmuch* cost

which is short for

x is *howmuch* cost cost()
Piecewise linear

Piecewise linear function $z = f(x)$
Breakpoints in A, ordinates in C

x is how much output
index in $\{1..n\}$
data A,C {index}
z is how much cost
piecewise(x,z,A,C) this metaconstraint defines $z = f(x)$
Piecewise linear

Piecewise linear function $z = f(x)$
Breakpoints in A, ordinates in C

x is how much output
index in $\{1..n\}$
data $A,C\{\text{index}\}$
z is how much cost
piecewise(x,z,A,C)

Solver generates the model

$$x = a_1 + \sum_{i=1}^{n-1} x_i, \quad z = c_1 + \sum_{i=1}^{n-1} \frac{c_{i+1} - c_i}{a_{i+1} - a_i} x_i$$

$$(a_{i+1} - a_i) \delta_{i+1} \leq x_i \leq (a_{i+1} - a_i) \delta_i, \quad \delta_i \in \{0,1\}, \quad i = 1, \ldots, n-1$$

We need to declare auxiliary variables δ_i, x_i
Piecewise linear

Piecewise linear function $z = f(x)$
Breakpoints in A, ordinates in C

- x is how much output
- index in $\{1..n\}$
- data $A,C\{\text{index}\}$
- z is how much cost

$\text{piecewise}(x,z,A,C)$

piecewise constraint induces solver to declare a new index set that associates index with A, and use it to declare δ_i, x_i

- $xbar[i]$ is how much output.$A(\text{index } i)$
- $\text{delta}[i]$ is whether last positive output.$A(\text{index } i)$

Both declarations create predicates inherited from output and A
Piecewise linear

Suppose there is another piecewise function on the same break points

\[x \text{ is how much output index in } \{1..n\} \]

\[data \ A,C\{index\} \]

\[z \text{ is how much cost} \]

\[piecewise(x,z,A,C) \]

\[data \ C'\{index\} \]

\[z' \text{ is how much profit} \]

\[piecewise(x,z',A,C') \]

\[x'[i] \text{ is how much cost output } A(index \ i) \]

\[\text{delta}'[i] \text{ is whether last positive output } A(index) \]
Suppose there is another piecewise function on the same break points:

- x is how much output index in $\{1..n\}$
- $A,C\{\text{index}\}$
- z is how much cost
- $\text{piecewise}(x,z,A,C)$
- $\text{data } C'\{\text{index}\}$
- z' is how much profit
- $\text{piecewise}(x,z',A,C')$
- $x'[i]$ is how much cost output $A(index \ i)$
- $\delta'[i]$ is whether last positive output $A(index)$

The solver creates variables δ'_i and x'_i with same types as δ_i and x_i and so identifies them.

Because new piecewise constraint is associated with the same x and A, solver again creates output A.
Interval variables

Each job j runs for a time interval x_j.
We wish to schedule jobs so that total resource consumption
never exceeds L.

\[
\text{cumulative}(x, D, R, L) \\
x_j \subseteq W_j, \text{ all } j
\]

```
job in {1..n}  
time in {t..T}  
data W,D,R{job} window, duration, resource  
running in [time,time] makes running an interval variable  
x[j] is when running sched(job j) subset W[j]  
cumulative(x,D,R,L)
```
Interval variables

Each job j runs for a time interval x_j.
We wish to schedule jobs so that total resource consumption never exceeds L.

job in {1..n}
time in {t..T}
data $W,D,R\{job\}$ window, duration, resource
running in [time, time] makes running an interval variable
$x[j]$ is when running sched(job j) subset $W[j]$
cumulative(x,D,R,L)

Solver generates the model

$$
\sum_t \delta_{jt} = 1, \text{ all } j; \quad \sum_j R_j \phi_{jt} \leq L, \text{ all } t
$$

$$
\phi_{jt} \geq \delta_{jt'}, \text{ all } t,t' \text{ with } 0 \leq t - t' < D_j, \text{ all } j
$$

delta[j,t] is whether running.start sched(job j, time t)
phi[j,t] is whether running sched(job j, time t)

cumulative(x,D,R,L)

$x_j \subset W_j, \text{ all } j$
Interval variables

Suppose we want finish times
to be separated by at least \(T_0 \)

\[
\begin{align*}
\text{job in } & \{1..n\} \\
\text{time in } & \{t..T\} \\
\text{data } & W,D,R\{\text{job}\} \\
\text{running in } & [\text{time, time}] \\
\text{x[j] is when running} & \text{ sched(job j) subset } W[j] \\
\text{cumulative(x,D,R,L)} & \\
\{\text{job j, job k | j<>k}\} & |x[j].\text{end} - x[k].\text{end}| \geq T_0 \\
\text{delta[j,t] is whether} & \text{ running.start} \text{ sched(job j, time t)} \\
\text{phi[j,t] is whether} & \text{ running sched(job j, time t)}
\end{align*}
\]
Interval variables

Suppose we want finish times to be separated by at least T_0

$$j, t$$

Solver generates

\[
\varepsilon_{jt} + \varepsilon_{kt'} \leq 1, \text{ all } t, t' \text{ with } 0 < t' - t < T_0, \text{ all } j, t \text{ with } j \neq k
\]
Interval variables

Variables δ_{jt} and ε_{jt} are related by an offset. Solver associates `running.end` in declaration of ε_{jt} with `running.start` in declaration of δ_{jt} and deduces

$$e_{j,t+D_j} = \delta_{jt}, \text{ all } j,t$$

delta[j,t] \text{ is whether running.start sched(job j, time t)}

phi[j,t] \text{ is whether running sched(job j, time t)}

epsilon[j,t] \text{ is whether running.end sched(job j, time t)}
Interval variables

Variables δ_{jt} and ε_{jt} are related by an offset.
Solver associates `running.end` in declaration of ε_{jt}
with `running.start` in declaration of δ_{jt} and deduces

$$e_{j,t+D_j} = \delta_{jt}, \text{ all } j,t$$

Solver also associates `running.end` in declaration of ε_{jt}
with `running` in declaration of ϕ_{jt} and deduces
the redundant constraints

$$\phi_{jt} \geq \varepsilon_{jt'}, \text{ all } t,t' \text{ with } 0 \leq t' - t < D_j, \text{ all } j$$

`delta[j,t]` is whether `running.start` sched(job j, time t)
`phi[j,t]` is whether `running` sched(job j, time t)
`epsilon[j,t]` is whether `running.end` sched(job j, time t)
TSP with Side Constraints

Traveling salesman problem with missing arcs and precedence constraints.

\[
\text{min} \sum D_{is_i} \\
\text{alldiff}(x), \text{circuit}(s) \\
x_i < x_j, \text{ all } i, j \text{ with } \text{prec}_{ij} = 1 \\
s_i \in \text{Succ}_i
\]

city, position in \{1..n\}
data D\{city, city\} \quad \text{Distances}
data Prec\{city, city\} \quad \text{Prec}[i,j]=1 \text{ if } i \text{ must precede } j
data Succ\{city\} \quad \text{Succ}[j] = \text{set of successors of city } j
TSP with Side Constraints

Traveling salesman problem with missing arcs and precedence constraints.

city, position in \{1..n\}
data \(D\{\text{city, city}\}\) Distances

data \(\text{Prec}\{\text{city, city}\}\) \(\text{Prec}[i,j]=1\) if \(i\) must precede \(j\)
data \(\text{Succ}\{\text{city}\}\) \(\text{Succ}[j] = \) set of successors of city \(j\)

Two variable systems:

\(x[i]\) is which position ordering(city \(i\))

\(s[i]\) is successor city ordering(city \(i\)) subset \(\text{Succ}[i]\)

\[
\min \sum_i D_{is_i}
\]

\(\text{alldiff}(x), \text{circuit}(s)\)

\(x_i < x_j, \text{ all } i, j \text{ with } \text{prec}_{ij} = 1\)

\(s_i \in \text{Succ}_i\)
TSP with Side Constraints

Traveling salesman problem with missing arcs and precedence constraints.

city, position in \{1..n\}
data \text{D}\{\text{city, city}\} \quad \text{Distances}
data \text{Prec}\{\text{city, city}\} \quad \text{Prec}[i,j]=1 \text{ if } i \text{ must precede } j
data \text{Succ}\{\text{city}\} \quad \text{Succ}[j] = \text{set of successors of city } j

Two variable systems:
\[x[i] \text{ is which position ordering(city } i) \]
\[s[i] \text{ is successor city ordering(city } i) \text{ subset Succ}[i] \]

Precedence constraints require \textbf{x} variables
\[\text{prec}\{\text{city } i, \text{city } j \mid \text{Prec}[i,j] = 1\}: x[i] < x[j] \]
Missing arc constraints (implicit in data \text{Succ}) require \textbf{s} variables

\[
\min \sum_i D_{is_i} \\
\text{alldiff}(x), \text{circuit}(s) \\
x_i < x_j, \text{ all } i, j \text{ with } \text{prec}_{ij} = 1 \\
s_i \in \text{Succ}_i
\]
Traveling salesman problem with missing arcs and precedence constraints.

city, position in \{1..n\}
data \(D\{\text{city, city}\} \) Distances
data \(\text{Prec}\{\text{city, city}\} \) \(\text{Prec}[i,j] = 1 \) if \(i \) must precede \(j \)
data \(\text{Succ}\{\text{city}\} \) \(\text{Succ}[j] = \) set of successors of city \(j \)

Two variable systems:
\(x[i] \) is which position ordering(city \(i \))
\(s[i] \) is successor city ordering(city \(i \)) subset Succ[\(i \)]

Precedence constraints require \(x \) variables
\(\text{prec}\{\text{city } i, \text{ city } j \mid \text{Prec}[i,j] = 1\} : x[i] < x[j] \)

Missing arc constraints (implicit in data Succ) require \(s \) variables

\[\min \sum \{\text{city } i\} \ D[i,s[i]] \] Objective function
TSP with Side Constraints

The solver can give \texttt{alldiff(x)} a conventional assignment model using $z_{ik} = \text{whether city } i \text{ is in position } k$.

$z[i,k]$ is whether ordering(city i, position k)
The solver can give $\text{alldiff}(x)$ a conventional assignment model using $z_{ik} = \text{whether city } i \text{ is in position } k$.

$z[i,k]$ is whether ordering(city i, position k)

For circuit(s), the solver can introduce $w_{ij} = \text{whether city } i \text{ immediately precedes city } j$.

$w[i,j]$ is whether successor ordering(city i, city j)
The solver can give `alldiff(x)` a conventional assignment model using $z_{ik} =$ whether city i is in position k.

$z[i,k] \text{ is whether ordering(city } i, \text{ position } k)$

For circuit(s), the solver can introduce $w_{ij} =$ whether city i immediately precedes city j.

$w[i,j] \text{ is whether successor ordering(city } i, \text{ city } j)$

Declaration of z tells solver that predicate is `ordering(city,position)`, not `ordering(city,city)`.
The solver can give \texttt{alldiff(x)} a conventional assignment model using $z_{ik} = \text{whether city } i \text{ is in position } k$.

$z[i,k]$ is whether ordering(city i, position k)

For \texttt{circuit(s)}, the solver can introduce $w_{ij} = \text{whether city } i \text{ immediately precedes city } j$.

$w[i,j]$ is whether successor ordering(city i, city j)

Declaration of z tells solver that predicate is ordering(city,position), not ordering(city,city). Solver generates cutting planes in w-space and s-space.
The solver can give \texttt{alldiff(x)} a conventional assignment model using \(z_{ik} = \) whether city \(i \) is in position \(k \).

\[z[i,k] \text{ is whether ordering(city } i, \text{ position } k) \]

For \texttt{circuit(s)}, the solver can introduce \(w_{ij} = \) whether city \(i \) immediately precedes city \(j \).

\[w[i,j] \text{ is whether successor ordering(city } i, \text{ city } j) \]

Declaration of \(z \) tells solver that predicate is \texttt{ordering(city,position)}, not \texttt{ordering(city,city)}. Solver generates cutting planes in \(w \)-space and \(s \)-space.

The \texttt{successor} keyword tells solver how \(z \) and \(w \) relate.

\[\phi_{jt} \geq \epsilon_{jt'}, \text{ all } t,t' \text{ with } 0 \leq t' - t < D_j, \text{ all } j \]
Suppose we also have constraints on which city is in position k. Simply declare

$$y[k] = \text{which city ordering(position k)}$$

The solver generates the channeling constraints between $y[k]$ and $x[i] = \text{which position is city } i$
TSP with Side Constraints

Suppose we also have constraints on which city is in position \(k \). Simply declare

\[
y[k] = \text{which city ordering(position } k)\]

The solver generates the channeling constraints between \(y[k] \) and \(x[i] = \text{which position is city } i \)

The solver can also introduce a second (equivalent) objective function

\[
\min \sum_{\text{position } k} D[y[k], y[k+1]]
\]

which may improve bounding.
Pros and Cons of Semantic Typing

• Pros
 • Conveys problem structure to the solver(s)
 – …by allowing use of metaconstaints
 • Incorporates state of the art in formulation, valid inequalities
 • Allows solver to expand repertory of techniques
 – Domain filtering, propagation, cutting plane algorithms
 • Good modeling practice
 – Self-documenting
 – Bug detection
Pros and Cons of Semantic Typing

• Cons
 • Modeler must be familiar with a large collection of metaconstraints
 – Rather than few primitive constraints
Pros and Cons of Semantic Typing

• **Cons**
 - Modeler must be familiar with a large collection of metaconstraints
 - Rather than few primitive constraints

• **Response**
 - Modeler must be familiar with the underlying concepts anyway
 - Modeling system can offer sophisticated help, improve modeling
Pros and Cons of Semantic Typing

• Cons
 • Modeler must be familiar with a large collection of metaconstraints
 – Rather than few primitive constraints
 • *Response*
 – *Modeler must be familiar with the underlying concepts* anyway
 – *Modeling system can offer sophisticated help, improve modeling*
 • OR, SAT community is not accustomed to high-level modeling
 – Typed languages like Ascend never really caught on.
Pros and Cons of Semantic Typing

• Cons
 • Modeler must be familiar with a large collection of metaconstraints
 – Rather than few primitive constraints

• Response
 – Modeler must be familiar with the underlying concepts anyway
 – Modeling system can offer sophisticated help, improve modeling

• OR, SAT community is not accustomed to high-level modeling
 – Typed languages like Ascend never really caught on.

• Response
 – Train the next generation!