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Abstract. Software Defined Networking (or SDN) allows to apply a centralized
control over a network of commuters in order to provide better global perfor-
mances. One of the problem to solve is the multi-commodity flow routing where
a set of demands have to be routed at minimum cost. In contrast with other ver-
sions of this problem, we consider here problems with congestion that change the
cost of a link according to the capacity used. We propose here to study centralized
routing with Constraint Programming and selfish routing with Constraint Games.
Selfish routing is important for the perceived quality of the solution since no user
is able to improve his cost by changing only his own path. We present real and
synthetic benchmarks that show a good scalability.

1 Introduction

With the internet of things, all kinds of devices are going to communicate, from washing
machines, lightbulbs to autonomous cars. By 2020, the forecasts estimate the number
of connected devices to the internet are growing over 31 billions [14]. The amount of
data transfer increases with the rise of the number of connected devices. Recently, Soft-
ware Defined Networking (or SDN) is replacing traditional network routing because it
allows fast and remote network reconfiguration, which enables a plethora of flexible
architectures, like the upcoming network slicing [24]. SDN (see Figure 1) allows to ap-
ply a centralized control over a network of commuters in order to increase the overall
performance.

Fig. 1. Software Defined Networking
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In this paper, we consider the independent routing of multiple demands across a net-
work, also called multi-commodity flow routing problem. Each demand has a source
and a destination and each link has a capacity. This problem has been studied since a
long time [3], mostly with Linear Programming or with other incomplete methods [1].
A survey can be found in [9]. Interesting theoretical results have been found, like the
one which states that when the problem has a sufficient size and capacity, all flows are
actually routed along single-paths [18]. This justifies the modern interest in unsplittable
routing of demands. Since capacity constrained shortest path is already NP-complete,
we do not consider other side constraints such as must-pass/cannot-pass or redundant
routing, although they can be easily introduced in our constraint model. But we do con-
sider a congestion model that increases the cost of a link according to the traffic routed
and we propose a Constraint Programming model to solve it optimally. For this, we use
a natural heuristic based on increasing paths and we introduce a lower bound that can
be used in branch and bound efficiently. Small instances of the problem correspond to
networks of aggregated traffic for which the users (often network providers) are very
sensitive to the quality of service. This is why an allocation which is a Nash equilibrium
will be preferred as it ensures the user that its quality of service cannot be improved by
any selfish move. For this, we make use of the recently introduced Constraint Games
framework [15] to compute routings which are at Nash equilibrium. In addition, we
derive exact and approximate bounds for Price of Anarchy [4] that allow to evaluate the
loss of efficiency of decentralized algorithms. In the benchmarks, we show games with
hundreds or even thousands of players solved up to optimality. These results have been
obtained with ConGa, an extension of the Choco solver for Constraint Games [15] and
show that a practical use of game theory is now possible at industrial scale.
Path heuristics have been introduced in CP in [16] in the context of network design,
which includes as a subproblem the routing problem we focus on (but without taking
congestion into consideration). More recently, in [8], the authors model a SDN problem
with CP. Our work differs in multiple points. We consider only single-path routing,
we take congestion into account, and more important, we take into account the quality
of service through the computation of Nash equilibria. From the game theory point
of view, the closer class of game studied are the congestion games [21]. This class of
games tries to study the impact of the congestion over a network. However this work is
different of ours because it never considers hard constraints in the model.
The paper is organizing as follow: first we introduce the problem in Section 2, then in
Section 3 and 4 we present the CP model and the heuristics used to compute a solution in
practice. We present the Constraint Games framework used to compute selfish routing
in Section 5 and end by presenting benchmarks for a range of real-world and synthetic
instances.

2 Multicommodity path routing in SDN

2.1 Problem statement

A multicommodity path routing problem (MCPRP) consists in a graph defining a net-
work and a set of commodities (flow demands) to be routed on this graph. We consider
here the simple problem in which we compute for each demand a single route from the
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source to the destination node such that the sum of bandwidth routed by a link does
not exceed its capacity. Congestion occurs when a link is taken and is reflected by a
congestion cost which helps to ensure an homogeneous distribution of the routes. The
overall objective is to minimize the sum of costs of the routed demands, and in case of
games, while preserving optimality for each player.
We assume we have a network N = (V,E), which is a directed graph composed of
a set of vertices (or nodes) V and a set of edges (or links) E ⊆ V 2. For each edge
e = (x, y) ∈ E, we associate a cost cost(e) ∈ R+ and a capacity cap(e) ∈ R+. Let
D be the set of demands to be routed. For a demand d ∈ D, we define src(d) ∈ V and
dst(d) ∈ V to be respectively the source and destination node, and bw(d) ∈ R+ to be
the required bandwidth for this demand.
A path is a sequence of nodes p = (vi)i∈[0..n] such that ∀i ∈ 0..n− 1, (vi, vi+1) ∈ E.
We denote by src(p) the node v0 and by dst(p) the node vn. We consider here only
acyclic paths, i.e. such that i 6= j → vi 6= vj . By a slight abuse of notation, we write
(x, y) ∈ p to denote that the arc (x, y) is taken in the path p.
A solution for the MCPRP is the assignment of a path path(d) to each demand d such
that:

1. (correctness) ∀d ∈ D, src(path(d)) = src(d) and dst(path(d)) = dst(d)

2. (admissibility) ∀e ∈ E,

 ∑
{d∈D | e∈path(d)}

bw(d)

 ≤ cap(e)

2.2 Congestion model

In order to ensure a good balance over the network, we incorporate to the model a model
of congestion. Basically, congestion will increase the cost of a link when this link will
be close to saturation. For this, we define the load of an edge e to be:

load(e) =

 ∑
{d∈D | e∈path(d)}

bw(d)

 / cap(e)

The congestion model we use has an exponential increase of the form cong(x) = eax+b

where x is the load of the arc. In order to choose the parameters a and b, we pose some
conditions the function. First we should have a sufficiently high value of cong(e) when
the load is 1. By sufficiently high we mean that a demand should not prefer to take a
heavily congested link while there are some (maybe longer) available paths. It can be
done by fixing this limit to the highest link cost of the network Mxc. We then have the
equation ea+b = Mxc. Then, in order to set when the exponential starts to overtake
on a linear increase, we impose a condition on the derivative to be 1 at a given point
α. The derivative of the congestion function is given by cong′(x) = aeax+b. If we
impose that the derivative should be 1 for x = α, we get the equation aeaα+b = 1. By
solving numerically these equations we get the values of a and b for a given problem.
For example, in Figure 2 is a plot of the congestion function for Mxc = 1000 and
cong′(0.2) = 1.
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Fig. 2. A plot of the congestion function for Mxc = 1000 and cong′(0.2) = 1

2.3 Optimization

Solving a MCPRP P to optimality means finding a solution minimizing the global
cost of the demands. For this, we first define the cost of a demand. It is obtained by
aggregating the cost of each traversed arc with the cost coming from congestion:

cost(d) = bw(d) ∗
∑

e∈path(d)

(cost(e) + cong(e)) (1)

Then the cost of the whole problem is given by:

cost(P ) =
∑
d∈D

cost(d) (2)

Note that this function is strictly monotonic, resulting that each addition of demand
increases the edge cost. The problem of finding a Nash equilibrium adds to this the con-
straint that there should not exist a better path for each demand provided that the other
paths remain identical. In other words, path should also be optimal for each demand.
This model will be presented in more details in Section 5.

3 Constraint model

In order to implement this problem as a constraint program, we need to first represent
paths, which will be the solutions of our problem. Then we need to link the computed
paths to the network data: costs, capacity and provide a support to compute congestion.
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3.1 Model of path

A path is represented by an array path of |V | variables, each one being assigned to
the next node along the path. The initial domain of a variable associated to a node v
is given by the the set of neighbors of v in the graph. In order to ensure the correct
representation of a path, we use the global constraint subPath(path, src, dst) which
ensures that the node from src to dst form a valid subpath of the graph. This constraint
is a variant of subCircuit. Unused nodes of the path point to themselves and an extra
variable is appended to the array to allow any vertex to be starting the path (see Figure
3 for the encoding of the path (2, 1, 4, 3, 5) from src = 2 to dst = 5).

Fig. 3. Encoding of a path

For each demand d ∈ D we associate an array pathd = (vdi )i∈V constrained by

subPath([vd1 , . . . , v
d
n], src(d), dst(d)) (3)

3.2 Graph model

In order to ensure that no link is overloaded and in order to compute congestion, we
need to know which demands are routed by a given arc. In this model, we use a Boolean
variable EdgeIsUsedd(i,j) which is true if the path [vd1 , . . . , v

d
n] assigned to demand d

uses the arc (i, j). This connection is done with the following channeling constraint:

∀(i, j) ∈ E,∀d ∈ D, EdgeIsUsedd(i,j) ↔ vdi = j (4)

We compute the amount of bandwidth routed by an arc in a variable f(e) with the
constraint:

∀e ∈ E, f(e) =
∑
d∈D

EdgeIsUsedde ∗ bw(d) (5)

We ensure that the capacity of each arc is not exceeded:

∀e ∈ E, f(e) ≤ cap(e) (6)

Then we can compute the congestion of a given edge in a variable cong(e):

∀e ∈ E, cong(e) = ea∗
f(e)

cap(e)
+b (7)
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The cost cost(d) of routing a demand by a given path is given by the constraint:

∀d ∈ D, cost(d) =
∑
e∈E

EdgeIsUsedde ∗ bw(d) ∗ (cost(e) + cong(e)) (8)

A variable ProblemCost sums the costs of all demands:

ProblemCost =
∑
d∈D

cost(d) (9)

We shall minimize this variable.
This model is quite easy and intuitive. It defines one Boolean variable by edge and by
demand. Since the number of edges is quadratic in the number of vertices, this number
may grow a lot for some large networks.

4 Heuristics and Branch & Bound

We have tried a variety of combinations of heuristics (or search strategy) and Branch
and Bound to improve the resolution of this problem. In this paper, we will refer to a
particular combination by A/B/C where A is the variable heuristic, B the value heuris-
tic and C the type of Branch and Bound, as explained below. At a given node of the
search tree, some demands or some partial paths may already be assigned. All heuris-
tics and upper bound computation use the residual graph obtained by considering this
part already fixed.
Path-oriented problems are particularly sensitive to heuristics, and not surprisingly, a
standard dynamic CP heuristic (denoted by CP in this paper) would be of weak effi-
ciency for this type of problem. Indeed, it is likely that this heuristic will label any node
in the path without knowing if it could be linked to the source or destination. Therefore,
we have chosen to label path variables in order of increasing path length. Note that this
is a partial variable heuristic since it is only once the demand is chosen that the actual
variable is determined by the next step to be extended. For the variable heuristics to
be completely defined, we have considered three strategies for choosing the demand.
The first one, called MB (for Max Bandwidth), consists in routing the next remaining
demand with the maximum bandwidth up to its completion. Then we have defined two
strategies based on conflicts which analyze the current solution once a first solution
has been found by MB or the situation after a fail. For each demand and each link, we
compute the marginal cost (with congestion) induced by the presence of the demand
on this very link. Then we sum up all these numbers for each demand along the taken
path to obtain a score. The first one, called CO (for Conflict), chooses the demand of
highest score and develop its path up to the destination. The second one, called CO1
(for Conflict 1 Step), also chooses the demand of highest score but only develops one
step in the path before reconsidering the situation. In CO1, the conflicts are stored for
each path variable for each demand and score are only computed for the uninstantiated
variables.

Example 1. In this example, we show the selection process of CO (upper part of Figure
4) and CO1 (lower part of Figure 4). Three demands d1, d2 and d3 with a respective
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Fig. 4. Comparison of the variable selection of the different strategies

bandwidth of 4, 3 and 2 have to be routed in the 7-nodes network depicted in Figure 4.
To keep things easy, all edges have a capacity of 7, a cost of 0 and congestion parameters
are set to a = 1 and b = −0.5. The Figure 4 compares the behaviors of the two
strategies: CO which chooses to develop a complete path and CO1 which chooses to
develop one edge after the other. At first (4a), a feasible solution is found. Path for
d1 is [4, 3, 7], for d2 [1, 2, 7] and for d3 [3, 1, 2]. After this first solution, conflicts are
analyzed. On the edge going from the node 1 to 2, the demands 2 and 3 are considered
in ”conflict”. These conflicts are monitored differently depending on the strategy: CO
has a counter for each demand while CO1 maintains one counter for each variable,
and for each demand. The corresponding counters (variable/demands or just demand)
of d2 and d3 will be respectively increased by the cost of routing d3 knowing that d1
(∆(price)d3(d2)) is already routed and the opposite (∆(price)d2(d3)):

– ∆(priced3(d2)) = 4× (e
3
7+

2
7−0.5 − e 2

7−0.5) = 0.19

– ∆(priced2(d3)) = 2× (e
4
7+

3
7−0.5 − e 4

7−0.5) = 0.06

Then, the solver backtracks to a possible solution of lower cost, and finds another path
for d1 (4 b).
The CO heuristic chooses the demand having the highest conflict score. In (4c and d)
CO chooses d2 and then d3.
CO1 still selects the demand with the highest conflict score but, it is computed over the
non instantiated vertices variables. And thus, the path of d2 is continued(4e), since it is
the demand having the highest conflict score. Afterwards, the score of d2 becomes 0,
because all its non-instantiated variable have a conflict score of 0. d3 is continued twice
because it has the highest score (4e ad f) and then reaches its destination. The demand
d2 is then continued up to its end (4e ad g).

For each variable, the value heuristics determines the direction the path will take. Since
the goal is to find the best path for each demand, it would be inefficient to start the
path in a wrong direction. In order to start with the most promising path, we maintain
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at each node of the search tree the shortest path to destination in the residual network
for each demand in isolation. We call this heuristic SP (for Shortest Path). It is done
with Dijkstra’s algorithm, considering the progression of the already assigned part of
the other demands. This information on the best future path is used to choose the next
node of the path when needed. Note that the Dijkstra algorithm only considers the
nodes of the paths already assigned at a given point of the search tree for computing
the congestion. In particular, the congestion is not cumulative for two demands which
share the same future link. The same idea has been implemented in [2] but with specific
path variables.
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Fig. 5. Labeling of paths for two demands

Example 2. In Figure 5 is depicted a small example of two demands being routed on
a 8-nodes network (5a) by the CO1 heuristic. Demand d1 has to be routed from node
1 to 8 and demand d2 from 2 to 8. Actual paths taken by the demands are depicted by
solid arrows while shortest paths computed by the heuristic are with solid lines. At first
(5b), the two demands compute their respective shortest paths: (1 − 3 − 6 − 8) for d1
and (2 − 3 − 6 − 8) for d2. In (5c), one labeling step is performed for d1. Since there
is no change on d2’s path, no update of d2’s shortest path is necessary. Hence in (5d)
one step is performed for d2. In (5e), the next move of d1 causes congestion on the link
from 3 to 6. Thus d2 updates its shortest path to (2− 3− 5− 7− 8) in (5f) to lower its
minimal cost. It yields a next move by d2 in the direction of node 5 in (5g).

Branch and bound is a common technique used in constraint optimization. However,
CP solvers offer a restricted and uninformed version of branch and bound: when min-
imizing the variable ProblemCost and after having found a solution of value A, it
simply adds to the end of the search the constraint ProblemCost < A. While effi-
cient, it requires that the lower bound of ProblemCost to exceed A to cut the search
tree and backtrack. In our case, the possible values of ProblemCost are strongly con-
strained by the current branch of the search tree leading to a node, but very loosely for
the remaining part of the problem. In order to cut earlier, we need a better estimation of
the lower bound of ProblemCost. This is done by adding to the lower bound the cost
of individual routing along the path computed by the Dijkstra algorithm used for the
value heuristic. Congestion is taken into account only for the already assigned nodes in
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demand paths and the current demand to estimate. It means that two demands whose
future path would take the same link do not create congestion in their future paths. We
need this to provide a better yet safe estimate of the lower bound which does not exceed
the future real cost. We call the classical CP branch & bound CP and the one which uses
the bound provided by the shortest path SP.
Let [ad1, . . . , a

d
i , . . . , a

d
nd
] be the path computed by the Dijkstra algorithm for a demand

d from node adi . We have ad1 = src(d) and adnd
= dst(d) and ∀j < i, the value of adj is

given by the instantiated part of the path in [vd1 , . . . , v
d
n] (up to the current node of the

search tree). The cost contribution of demand d is given by:

cost(d) =
∑

{e=(adj ,a
d
j+1) | j<i}

bw(d) ∗ (cost(e) + cong(e)) +

∑
{e=(adj ,a

d
j+1) | i≤j<nd}

bw(d) ∗ cost(e) (10)

Proposition 1. Given a monotonic cost function (see equation (1)), the bound given in
equation 10 is sound.

Proof. Since Dijkstra algorithm computes the shortest paths according to costs, all other
paths for this demand are of greater cost. In addition, routing additional demands can
only increase congestion, thus increase the total cost of each demand.

Note that, due to the presence of link capacity constraints, a fail is triggered when
Dijkstra algorithm is unable to find a path from the source to the destination [22].

5 Constraint Games

In this section, we briefly introduce Constraint Games [11, 15], which are an extension
of Constraint Programming allowing to find Nash equilibria.
A game [4] is a situation where a set of players P can perform actions and get a reward
which depends on their own choice of action, but also on the actions of the other play-
ers. Players are selfish and always aim to increase their utility by changing their own
action if they have an opportunity to do so. A (pure) Nash equilibrium (PNE) [25, 10] is
a situation where all players cannot improve their own utility by changing their own ac-
tion. A game may or may not have an equilibrium, and the existence of an equilibrium
is an NP-complete problem [6].
In many cases, the efficiency of a solution can be evaluated by an external measure
called social welfare function which should be maximized. This global function allows
to compute the best centralized solution (by discarding the players objectives). Then
it is possible to quantify the loss of efficiency induced by the selfish behavior of the
players by considering the ratio ”best centralized solution / best equilibrium” called
Price of Stability (PoS) and ”best centralized solution / worst equilibrium” called Price
of Anarchy (PoA).
Constraint Games allow to represent in a compact and natural way games with multiple
players and also give a powerful solving method by lifting consistency techniques to the
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equilibrium property [15]. In Constraint games, actions are represented by the possible
assignments of controlled variables. Utility is represented with constraint optimization,
and the rich language of most constraint solvers is available to express a large spectrum
of problems in a concise and meaningful way.
A Constraint Satisfaction Game (or CSG) is a 4-tuple (P, V,D,G) where P is a fi-
nite set of players, V is a finite set of variables composed of a family of disjoint sets
(Vi)i∈P for each player and a set VE of existential variables disjoint of all the players
variables, D is defined as for CSP, and G = (Gi)i∈P is a family of CSP on V repre-
senting the goal of each player. In a CSG, all players seek for satisfaction of their goal.
However, it may happen that a player is not satisfied in an equilibrium if none of his/her
move allows for satisfaction. Determining whether a game has a PNE in a Constraint
Satisfaction Game is ΣP

2 -complete. Note that [11] has introduced satisfaction and op-
timization variants of Constraint Games. A Constraint Optimization Game (COG) is a
variant (P, V,D,G, opt) where opt = (opti)i∈P and ∀i ∈ P, opti ∈ V is the variable
whose value defines the utility function ui of Player i. All players want to maximize
their utility.
In addition, Constraint Games are able to represent easily hard constraints that define
situations which are globally possible or forbidden [20] by adding a global CSP C
to the problem. Nash equilibria can only be sought in the satisfiable part of the hard
constraints. A global optimization condition on a variable w allows to model the social
welfare function. Without further information, we call Constraint Game a COG with
constraints and social welfare and we refer to it by CG = (P, V,D,G, opt, C,w).
The solving technique introduced in [11] and further developed in [15] is based on tree
search. Players’ preferences are represented by Nash constraints and their filtering is
based on the detection of never best responses, which are values that never lead to an
improvement. The strong filtering of [15] works only for Constraint Games without
hard constraints (or if the hard constraints are functional), otherwise we can fall back
to the weaker form of [11], which is the case in this problem because of the capacity
constraints on the links.
Incomplete algorithms can also be used to find quickly a first Nash equilibrium. Iterated
Best Response (or IBR) [23] is the simplest local search algorithm to find a PNE in any
game representation. This iterative process starts from any strategy profile. At each step,
if there exists a player for whom the current strategy profile is not a best response, then
this player deviates to his best response which will be considered as the candidate in the
next step. The process stops when all players are no longer able to change their strategy
or if the algorithm fails to find an equilibrium in a given time credit Max Step. In the
first case, the last profile is a Nash equilibrium. In this paper, we have used IBR as a
heuristic to go from the first solution to the first equilibrium.
The MCPRP defined in section 2 can be simply extended to a game by considering each
demand as a player who wants to find the best route from source to destination. Then
each player wants to minimize her/his own cost as defined in equation 1.
If we denote by S = DV the total search space and by N the set of Nash equilibria,
we can define formally the welfare of the best centralized solution adapted to our cost
minimization problem by W ∗ = min{w(s) | s ∈ S}. The welfare of the best Nash
equilibrium is defined in a similar way by N∗ = min{w(s) | s ∈ N} and the one
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of the worst one by n∗ = max{w(s) | s ∈ N}. Thus the Price of Stability is simply
PoS = W ∗/N∗ and the Price of Arnarchy PoA = W ∗/n∗. Note that usually the
classical definitions of PoS and PoA yield a result greater than 1, this is not the case
here because we have a minimization problem.
In our problem, the social welfare function is simply the global cost to be minimized
as defined in equation 2. We proceed in two steps. First the best centralized solution
is computed as a Constraint Optimization Problem, then the Nash equilibria using our
Constraint Games solver. We can immediately see that PoS and PoA are asymetric
in term of the branch and bound we can implement. For PoS, the problem is still a
minimization. Thus we can use the same branch and bound as the one we use in the
centralized version (equation 10).
For the PoA, we have a maximization problem. But each player still wants to minimize
her/his cost. The situation is then to find a set of shortest paths of maximal global cost.
The standard branch and bound provided by the CP solver provides a loose upper bound
for this problem by summing up all upper bounds of the costs of the edges. But we know
that the upper bound is at most the cost of the longest path in the residual network.
Unfortunately, computing the longest path is NP-complete in the general case, since it
corresponds to determine if it exists an Hamiltonian cycle, which is NP-complete [5].
This problem has been already addressed in CP [17] where the authors propose a model
and a local search algorithm to solve this problem. In our case, we are interested in a
polynomial sound algorithm. This is why we propose to approximate the longest path
by a Maximum Spanning Tree (MST) in the residual graph. The MST is computed
by considering the upper bound value of the cost of the edges. The algorithm is like
Prim’s algorithm, we add to all remaining edges the cost of the demand to compute
congestion, then we start by taking the most costly edge and add edges linking a new
node in descending order of cost. It is clear that the cost of the MST is always greater
than the cost of the longest path.

6 Instances and experimental results

We have tested our framework on a library of instances called SNDlib [13] and a per-
sonal problem generator that is able to generate instances close to real ones.

6.1 Generator

We have designed a generator to create synthetic problems that allow to test the algo-
rithms against different hypothesis. Several parameters allow to obtain a great variety
of graphs. The generation process is mainly constituted of two phases:

– Generation of the topology, that is nodes as well as arcs and their respective costs;
– Generation of demands, along with their bandwidth requests, which also determines

the capacities of the arcs.

During the generation of the topology, Nnodes nodes are created. Each of these nodes
ni with i ∈ [1, Nnodes] is assigned to random coordinates in a fixed size space of
topologyDimension dimensions. In case the boolean topologicalCost is set to true,
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the cost of an arc is given by the distance between the source and destination node.
Note that for dimension 2, this is not sufficient to ensure that the resulting graph is
planar. The size of the space in one given dimension is irrelevant, as we refer to it
only with percentage. Each node is also assigned to a degree, randomly chosen in an
interval [degmin, degmax]. To obtain graphs similar to actual networks, we introduce
hubs which are nodes of higher degree than regular nodes. Each node has a probability
Phub of being a hub. If a node is a hub, then its degree is randomly chosen in a different
interval [deghmin, deghmax].
We first build a spanning tree over all nodes to ensure that the graph is fully connected,
then we create the remaining links in the graph. For each node, we look for candidates
so the desired degree is reached. For a link to be created, we ensure that a) the other node
is not already connected with this edge and b) its distance in the space is not greater than
maxDistance, expressed as a percentage of the space size (

√
topologyDimension is

the maximum). Using this process, it is possible that certain nodes do not reach the
desired degree, but as the network grow larger, this situation becomes less and less
likely to happen.
Once the topology is generated, Ndemands are generated. For each of these, a starting
node is randomly selected, as well as a bandwidth in a [bwmin, bwmax] interval. We then
generate what we refer to as an ”initial path”. For that purpose, different strategies are
available. The first strategy, called random generation, consists in selecting a random
number of hop h in the [hopmin, hopmax] interval, and randomly navigating in the
graph for h hops, starting from the initial node. The last node is then considered to
be the destination node of the request. During the navigation, we only make sure to
never reach a node that is already in the initial path. The second strategy consists in
randomly selecting a destination node, and applying a shortest path algorithm to find
the the path from the source node to the destination node with the least number of hops.
The path yielded by the algorithm is considered to be the initial path. Regardless of
how the initial path is constructed, for each of its arc, there is a probability Pbw that we
increase its capacity of the amount of bandwidth of the request. The list of all generation
parameters, as well as short description can be found in Table 1.

6.2 Settings

Due to the large number of parameters of the generator, we have applied a benchmark
method called combinatorial testing [12, 7] using the ACTS software [26]. This tech-
nique allows for p parameters and a size c to generate a set of instances where all
possibilities of combinations of parameters of cardinality c are inside the set. For ex-
ample, if we have 3 Boolean parameters a, b and c, a complete test of all possibilities
would require 23 = 8 tests. But if we decide to test only all combinations of pairs, we
can achieve this with only 4 instances (see Figure 6). With our generator, by choosing
an appropriate sampling of the intervals described in 1, we get roughly 500 instances to
get a covering of all 3-sets of parameters. From these 500 instances, we have discarded
those whose resolution lead to a timeout for all techniques. This gives a total of 123
instances which give a meaningful picture of the range of problems that can be solved.
The tests have been performed on a cluster of Intel Xeon E5-2690, each having 10 cores
sequenced at 3GHz and 256 GB of RAM. We have computed experimental results for
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Parameter Type Range used in the benchmarks
Nnodes integer 50, 75, 100, 120, 140, 160, 180, 200, 500

topologyDimension integer 2

topologicalCost boolean true, false

degmin, degmax integer [1, 2, 4, 8], [2, 5, 7, 10]
Phub integer 0, 1, 5, 10, 20

deghmin, deghmax integer [25, 50, 75, 100], [25, 50, 75, 100]
initbwmin, initbwmax integer [50, 100, 200], [50, 100, 200]
initcostmin, initcostmax integer [100, 200], [200, 500]
maxDistance integer 25, 50, 100

Ndemands integer 30, 50, 100, 120, 130, 150, 200

bwmin, bwmax integer [50, 100, 200], [50, 100, 200]
hopmin, hopmax integer [0], [10]

Pbw integer [10, 30, 50, 70, 90, 100]

Table 1. Parameters of the generator

Fig. 6. All pairs of parameters are covered by 4 tests

the CP approach described in Section 3 and the Constraint Game model of Section 5
with a timeout fixed at 1 hour.

6.3 Experimental results

For the synthetic benchmarks, we have displayed the results in Figure 7. As a prelimi-
nary test, we have tried the pure CP heuristic based on impact [19] to measure the gap
with the SP value heuristics. A problem which should be easy (13 nodes and 9 demands)
is solved in less than 1 second by using the shortest path strategy, whereas the impact
strategy took 878.969 seconds. Due to this, we have not displayed this CP/CP/CP
heuristics in the figure and we only present results for the SP strategy.
For each instance, we have run the combinations MB/SP/CP and MB/SP/SP, and the
two conflict variants CO/SP/SP and CO1/SP/SP. The plot in Figure 7 show how
many instances are solved in a specific delay. Clearly, the MB/SP/SP heuristics out-
performs the other ones. This is not surprising compared with the CP-style B&B, but it
shows that a more dynamic heuristics based on conflicts is not effective on this type of
problems.
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Fig. 7. Comparison of different heuristics on synthetic benchmarks

Then for the Constraint Game model, we have only used the combination MB/SP/SP,
with and without improvement of the first solution by IBR. Results show that IBR
improves branch and bound by giving a better first solution which is also an equilibrium.

instance #Demands #Nodes #Edges MB/SP/CP MB/SP/SP [NASH] MB/SP/SP
dfn-bwin 90 10 45 TO 0.670 3.871
dfn-gwin 110 11 47 TO 0.746 5.681
di-yuan 22 11 42 TO 0.472 2.012
giul39 1471 39 172 TO 26.554 1571.197
india35 595 35 80 TO 8.739 215.716
newyork 240 16 49 TO 3.486 18.173
nobel-eu 378 28 41 TO 4.919 41.861
norway 702 27 51 TO 7.962 154.520

pdh 24 11 34 TO 0.553 2.016
geant 462 22 36 2.729 2.550 2.92

germany 662 50 88 6.489 6.241 6.783
janos-us 650 26 84 3.508 3.605 5.174

janos-us-ca 1482 39 122 25.926 25.926 50.486
france 300 25 15 TO TO TO

pioro40 780 40 89 TO TO TO

polska 66 12 18 TO TO TO

Table 2. Results on real-world instances of SDNlib

We present in Table 2 the run-time comparison in second of the different strategies
on the SNDlib instances. Each instance is described by its name (which corresponds
usually to a network in a particular country), then the number of demands, nodes and
links of the network. Without surprise, the improved branch and bound allows to solve
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many instances up to optimality. On the Constraint Game side, it is interesting to see
that games of unprecedented size (up to 1482 players in the janos-us-ca instance) can
be solved up to optimality by Conga [15]. Interestingly, we have observed that IBR
slightly degrades the time of computation, this is why we did not include the column in
the table. We believe that in these problems, most first solutions computed by the MB
heuristics were already at equilibrium, and thus adding IBR only adds another check.

0,8

0,85

0,9

0,95

1

POA POS

Fig. 8. Price of Anarchy and Price of Stability for small synthetic instances

We report the results for the computation of PoA and PoS for small synthetic instances
in Figure 8. In most instances, we observe that the PoA and PoS are very close, and also
very close to the centralized optimum. It means that on these problems, a decentralized
algorithm would be very interesting to implement if we assume it scales up to larger
problems. We have used much smaller instances because the PoA is very difficult to
reach. The upper bound computed by the MST overestimates the longest path which
also overestimates the longest shortest path. We pay these two approximations by a
limited pruning of the search tree which has a major impact on the computation time.

7 Conclusion

This paper includes two practical contributions. First we have modeled and solved effi-
ciently the unsplittable multi-commodity flow routing problem with congestion in Con-
straint Programming. We have provided an accurate branch and bound technique that
allows to solve real-world size instances up to optimality. Our second contribution is
a Constraint Game model that allows to evaluate the potential of decentralized routing
in this context. Decentralized routing is crucial for the online version of the problem
where demands come as a flow. We have found all Nash equilibria for problems with
thousands of player thanks to the Constraint Game solver Conga. This is the first time
that such large instances are solved up to optimality by a general-purpose Game Theory
solver.
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