
Encoding Cardinality Constraints using Multiway
Merge Selection Networks

Michał Karpiński, Marek Piotrów

Institute of Computer Science, University of Wrocław
Joliot-Curie 15, 50-383 Wrocław, Poland

{karp,mpi}@cs.uni.wroc.pl

Abstract. Boolean cardinality constraints (CCs) state that at most (at least, or
exactly) k out of n propositional literals can be true. We propose a new, arc-
consistent, easy to implement and efficient encoding of CCs based on a new class
of selection networks. Several comparator networks have been recently proposed
for encoding CCs and experiments have proved their efficiency [1, 2, 8, 9]. In our
construction we use the idea of the multiway merge sorting networks by Lee and
Batcher [6] that generalizes the technique of odd-even sorting ones by merging
simultaneously more than two subsequences. The new selection network merges
4 subsequences in that way. Based on this construction, we can encode more ef-
ficiently comparators in the combine phase of the network: instead of encoding
each comparator separately by 3 clauses and 2 additional variables, we propose
an encoding scheme that requires 5 clauses and 2 variables on average for each
pair of comparators. We also extend the model of comparator networks so that
the basic components are not only comparators (2-sorters) but more general m-
sorters, for m ∈ {2,3,4}, that can also be encoded efficiently. We show that with
small overhead (regarding implementation complexity) we can achieve a signif-
icant improvement in SAT-solver runtime for many test cases. We prove that the
new encoding is competitive to the other state-of-the-art encodings.

1 Introduction

Several hard decision problems can be efficiently reduced to the Boolean satisfiability
(SAT) problem and tried to be solved by recently-developed SAT-solvers. Some of them
are formulated with the help of different high-level constraints, which should be either
encoded into CNF formulas or solved inside a SAT-solver by a specialized extension.
There has been much research on both of these approaches.

In this paper we consider encodings of Boolean cardinality constraints that take the
form x1 +x2 + · · ·+xn ∼ k, where x1,x2, . . . ,xn are Boolean literals (that is, variables or
their negations),∼ is a relation from the set {<,≤,=,≥,>} and k∈N. Such cardinality
constraints appear naturally in formulations of different real-world problems including
cumulative scheduling [17], timetabling [3] or formal hardware verification [7].

In a direct encoding of a cardinality constraint x1+x2+ · · ·+xn < k one can take all
subsets of X = {x1, . . . ,xn} of size k and for each of them construct a CNF formula that
states that at least one of the literals in the subset must be false. The direct encoding
is quite efficient for very small values of k and n, but for larger parameters another
approach should be used.

2 Michał Karpiński, Marek Piotrów

1.1 Related work

In the last years several selection networks were proposed for encoding cardinality
constraints and experiments proved their efficiency. They were based mainly on the
odd-even or pairwise comparator networks. Codish and Zazon-Ivry [8] introduced pair-
wise selection networks that used the concept of Parberry’s pairwise sorting network
[15]. Their construction was later improved by Karpiński and Piotrów [12]. Abı́o, Ası́n,
Nieuwenhuis, Oliveras and Rodrı́guez-Carbonell [1, 2] defined encodings that imple-
mented selection networks based on the odd-even sorting networks by Batcher [5]. In
[1] the authors proposed a mixed parametric approach to the encodings, where the di-
rect encoding is chosen for small sub-problems and the splitting point is optimized
when large problems are divided into two smaller ones. They proposed to minimize the
function λ · num vars+ num clauses in the encodings. The constructed encodings are
small and efficient.

1.2 Our contribution

To improve the existing constructions, we started looking for selection networks that
can be easily implemented and encoded with a smaller number of auxiliary variables
and, if possible, not much larger number of clauses. In addition, we investigate the
influence of our encodings on the execution times of SAT-solvers to be sure that the new
algorithms can be used in practice. The obtained construction is presented in this paper.
The main idea is to split the problem into 4 sub-problems, recursively select elements
in them and then merge the selected subsequences using an idea of multi-way merging.
In such a construction, we can encode more efficiently comparators in the combine
phase of the merger: instead of encoding each comparator separately by 3 clauses and
2 additional variables. we propose an encoding scheme that requires 5 clauses and 2
variables on average for each pair of comparators. Moreover, in the network we can use
not only comparators (2-sorters) but also m-sorters (for m ≤ 4), which can be encoded
directly. It should be noted here that the value of m must be small, because the direct
encoding of an m-sorter requires 2m−1 clauses.

Using this generalized version of comparators we have created a novel class of
networks which we call 4-Odd-Even Selection Networks, where the multi-way merge
sorting networks by Batcher and Lee [6] are generalized in a way that we can recursively
select k largest elements from each of the 4 sub-problems.

Our algorithm is presented using divide-and-conquer paradigm. The key to achieve
efficient algorithms lies in the construction of networks that combine the results ob-
tained from the recursive calls. The construction of those mergers is one of the main
results of this paper. We give a detailed construction for 4-Odd-Even Merging Network.
We compare the numbers of variables and clauses of the encoding and its counterpart:
the 2-Odd-Even Merging Networks [8]. The calculations show that encodings based on
our network use fewer variables and clauses, when k < n.

The construction is parametrized by any values of k and n, so they can be further
optimized by mixing them with other constructions. For example, in our experiments
we mixed them with the direct encoding for small values of parameters. We used the
standard encoding of m-sorters, therefore arc-consistency is preserved [10]. Finally, we

Encoding Cardinality Constraints using Multiway Merge Selection Networks 3

present results of our experiments. We show that multi-column selection networks are
superior to standard selection networks previously proposed in the literature, in context
of translating cardinality constraints into propositional formulas.

We also empirically compare our encodings with other state-of-the-art encodings,
not only based on comparator networks, but also on binary adders and binary decision
diagrams. Those are mainly used in encodings of Pseudo-Boolean constraints, but it is
informative to see how well they perform when encoding cardinality constraints.

1.3 Structure of the paper

The rest of the paper is organized as follows: Section 2 contains definitions and no-
tations used in the paper. In Section 3 the construction of the 4-Odd-Even Selection
Network is given. In Section 4 we compare the encoding produced by our constructions
with 2-Odd-Even Selection Networks in terms of number of variables and clauses. Our
experimental evaluation is presented in Section 5 followed by conclusions in Section 6.

2 Preliminaries

In this section we introduce definitions and notations used in the rest of the paper. Let
X denote a totally ordered set, for example the set of natural numbers N or the set of
binary values {0,1}.

Definition 1 (sequences). A sequence of length n, say x̄ = 〈x1, . . . ,xn〉, is an element
of Xn. In particular, an element of {0,1}n is called a binary sequence. We say that a
sequence x̄ ∈ Xn is sorted if xi ≥ xi+1, 1 ≤ i < n. Given two sequences x̄ = 〈x1, . . . ,xn〉
and ȳ = 〈y1, . . . ,ym〉 we define concatenation as x̄ :: ȳ = 〈x1, . . . ,xn,y1, . . . ,ym〉.

We use also the following notation: x̄odd = 〈x1,x3, . . .〉, x̄even = 〈x2,x4, . . .〉, x̄a,...,b =
〈xa, . . . ,xb〉, 1 ≤ a ≤ b ≤ n, and the prefix/suffix operators: pref(i, x̄) = x̄1,...,i and
suff(i, x̄) = x̄i,...,n, 1 ≤ i ≤ n. The length of x̄ is denoted by |x̄|. The number of occur-
rences of a given value b in x̄ is denoted by |x̄|b.

A sequence x̄ ∈ Xn is top k sorted, for k ≤ n, if 〈x1, . . . ,xk〉 is sorted and xk ≥ xi, for
each i > k.

2.1 Comparator Networks

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

Fig. 1. Comparator network.

We construct and use comparator networks in this paper.
Traditionally comparator networks are presented as cir-
cuits that receive n inputs and permute them using com-
parators (2-sorters) connected by ”wires”. Each compara-
tor has two inputs and two outputs. The ”upper” output
is the maximum of inputs, and ”lower” one is the mini-
mum. The standard definitions and properties of them can
be found, for example, in [13]. The only difference is that
we assume that the output of any sorting operation or com-
parator is in a non-increasing order.

In the definitions of this section we assume that comparators are functions and com-
parator networks are composition of comparators. This makes the presentation clear.

4 Michał Karpiński, Marek Piotrów

Example 1. Figure 1 is an example of a simple comparator network consisting of 3
comparators. It outputs the maximum from 4 inputs on the top horizontal line, namely,
y1 = max{x1,x2,x3,x4}.

Definition 2 (selection network, m-sorter). A comparator network f n
k (where k ≤ n)

is a k-selection network (or k-selector of order n), if for each x̄ ∈ Xn, f n
k (x̄) is top k

sorted and is a permutation of x̄. An m-selector of order m is called a sorting network
(or an m-sorter).

The main building blocks of our networks are mergers – networks that output sorted
sequence (or top k sorted sequence) given outputs of recursive calls.

Definition 3 (m-merger). A comparator network f s
k is an m-merger of order k, if for

each tuple T = 〈x̄1, . . . , x̄m〉, where each x̄i is top k sorted and s = ∑
m
i=1 |x̄i|, f s

k (T) is top
k sorted and is a permutation of x̄1 :: . . . :: x̄m.

2.2 Standard Encoding of Cardinality Constraints

A clause is a disjunction of literals (Boolean variables x or their negation ¬x). A CNF
formula is a conjunction of clauses. Cardinality constraints are of the form x1 + · · ·+
xn ∼ k, where k ∈ N and ∼ belongs to {<,≤,=,≥,>}. We will focus on cardinality
constraints with less-than relation, i.e. x1 + · · ·+ xn < k. The other can be easily trans-
lated to such form (see [2]).

In [1, 2, 8, 9] authors are using sorting networks to encode cardinality constraints,
where inputs and outputs of a comparator are Boolean variables and comparators are en-
coded as a CNF formula. In addition, the k-th greatest output variable yk of the network
is forced to be 0 by adding ¬yk as a clause to the formula that encodes x1+ · · ·+xn < k.
We use similar approach, but rather than using simple comparators (2-sorters), we also
use comparators of higher order as building blocks. The m-selector of order n can be
encoded as follows: for n input variables x̄ and m output variables ȳ, we add the set of
clauses {xi1 ∧ ·· · ∧ xip ⇒ yp : 1 ≤ p ≤ m,1 ≤ i1 < · · · < ip ≤ n}. The m-sorter is an
m-selector of order m, therefore we need m auxiliary variables and 2m− 1 clauses to
encode it.

Example 2. Assume, that we would like to encode 1-selector of order 4 using the
network given in Figure 1. If we name the input variables of the longer comparator
as {z1,z2}, then the entire network can be encoded by encoding each 2-sorter sepa-
rately. This produces the clause set {x1⇒ z1,x2⇒ z1,x1 ∧ x2⇒ y2}∪{x3⇒ z2,x4⇒
z2,x3 ∧ x4 ⇒ y4} ∪ {z1 ⇒ y1,z2 ⇒ y1,z1 ∧ z2 ⇒ y3}. This approach uses 6 auxiliary
variables (not counting xi’s) and 9 clauses. Another way to encode the same network is
to simply use a single 1-selector of order 4. This gives the clause set {x1 ⇒ y1,x2 ⇒
y1,x3⇒ y1,x4⇒ y1}, where we only need 1 additional variable and 4 clauses. Notice
that to achieve y1 = max{x1,x2,x3,x4} we are only interested in the value of the top
output variable, therefore we do not need to assert other output variables.

Encoding Cardinality Constraints using Multiway Merge Selection Networks 5

oe_4sel5
3

oe_4sel2
2

oe_4sel2
2

oe_4merge5
3

oe_4merge4
1

oe_4combine4 6
3

oe_4merge9
3

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

1

0

1

1

1

1

1

1

oe_4sel2
2

0

Fig. 2. An example of 4-Odd-Even Selection Network, with n = 11, k = 3, n1 = 5, n2 = n3 =
n4 = 2.

2.3 Arc-consistency

Unit Propagation (UP) is a process, that for given CNF formula, clauses are sought in
which all literals but one are false (say l) and l is undefined (initially only clauses of
size one satisfy this condition). This literal l is set to true and the process is iterated
until reaching a fix point.

In the case of cardinality constraints and SAT-solvers, arc-consistency states that:
for a constraint x1 + · · ·+xn < k, as soon as k−1 variables among the xi’s become true,
unit propagation sets all other xi’s to false. This has a positive impact on the practical
efficiency of SAT-solvers, which is an important factor for the Constraint Programming
community.

Encodings using selection networks where each m-sorter is encoded as described in
the previous sub-section and additional clause ¬yk is added are said to be encoded in a
standard way, and it is already known that such encodings are arc-consistent [10].

3 New Selection Network

Here we present a novel construction of selection network which uses sorters up to
size 4 as components. We want to apply our algorithms for CNF encoding, therefore
the only non-trivial operation that we are allowed to use in generalized comparator
networks is selectmk : Xm → Xm, which is an k-selector of order m (for k ≤ m ≤ 4 or
k = 1). For the purpose of presentation we use it as a black box, but keep in mind that
in the actual implementation one should encode each k-selector of order m using the
standard procedure explained in Section 2. We would also like to note that only first k
output for the selection network is of interest, but to stay consistent with the definitions
of Section 2, we write our algorithms so that the output sequence is a permutation of
the given input one. To this end we introduce the variable out in which we store all
throw-away variables in an arbitrary order. The sequence out is then appended to the
output of the algorithm.

6 Michał Karpiński, Marek Piotrów

Network 1 oe 4seln
k

Input: x̄ ∈ {0,1}n; 0≤ k ≤ n
1: if k = 0 or n≤ 1 then return x̄
2: else if k = 1 then return selectn1(x̄)

3: if n < 8 or k = n then n2 = b(n+2)/4c; n3 = b(n+1)/4c; n4 = bn/4c; . divide evenly
4: else if 2dlog(k/6)e ≤ bn/4c then n2 = n3 = n4 = 2dlog(k/6)e . divide into powers of 2
5: else n2 = n3 = n4 = bk/4c . otherwise, if the power of 2 is too far from k/4
6: n1 = n−n2−n3−n4 . n = n1 + · · ·+n4 and n1 ≥ n2 ≥ n3 ≥ n4
7: o f f set = 1
8: for all i ∈ {1, . . . ,4} do
9: ki = min(k,ni)

10: ȳi← oe 4selni
ki
(〈xo f f set , . . . ,xo f f set+ni−1〉) . recursive calls

11: o f f set+= ni

12: s = ∑
4
i=1 ki; out = suff(k1 +1, ȳ1) :: · · · :: suff(k4 +1, ȳ4)

13: return oe 4merges
k(〈pref(k1, ȳ1), . . . ,pref(k4, ȳ4)〉) :: out

Ensure: The output is top k sorted and is a permutation of the inputs.

3.1 4-Odd-Even Selection Network

We begin with the top-level algorithm for constructing the 4-Odd-Even Selection Net-
work (Network 1) where we use oe 4merges

k as a black box. It is a 4-merger of order
k. We give detailed construction of a 4-merger called 4-Odd-Even Merger in the next
sub-section.

The idea we use is the generalization of the one used in 2-Odd-Even Selection
Network from [8], which is based on the Odd-Even Sorting Network by Batcher [5], but
we replace the last network with Multiway Merge Sorting Network by Batcher and Lee
[6]. We arrange the input sequence into 4 columns of non-increasing sizes (lines 3–6)
and then recursively run the selection algorithm on each column (lines 9–11), where at
most top k items are selected from each column. Notice that each column is represented
by ranges derived from the increasing value of variable o f f set. Notice further, that sizes
of the columns are selected in such a way that in most cases all but first columns are
of equal length and the length is a power of two (lines 3–5) that is close to the value of
k/4 (observe that [k/6,k/3) is the smallest symmetric interval around k/4 that contains
a power of 2). Such a choice produces much longer propagation paths for small values
of k with respect to n. In the recursive calls selected items are sorted and form prefixes
of the columns, which are then the input to the merging procedure (line 13). The base
case, when k = 1 (line 2), is handled by the auxiliary network selectn1, which outputs the
maximum of n elements and can be encoded with n clauses.

Example 3. In Figure 2 we present a schema of 4-Odd-Even Selection Network, which
selects 3 largest elements from the input 01100000001. In this example, n = 11, k = 3,
n1 = 5, n2 = n3 = n4 = 2. First, the input is passed to the recursive calls, then the
procedure oe 4merge9

3 is applied (Network 3).

Theorem 1. Let n,k ∈ N, such that k ≤ n. Then oe 4seln
k is a k-selection network.

Due to the space limitations a proof will be given in the full version of the paper.

Encoding Cardinality Constraints using Multiway Merge Selection Networks 7

Network 2 oe 4combines
k

Input: A pair of sorted sequences 〈x̄, ȳ〉, where k≤ s = |x̄|+ |ȳ|, |ȳ| ≤ bk/2c, |x̄| ≤ bk/2c+2 and
|ȳ|1 ≤ |x̄|1 ≤ |ȳ|1 +4.

1: Let x(i) denote 0 if i > |x̄| or else xi. Let y(i) denote 1 if i < 1 or 0 if i > |ȳ| or yi, otherwise.
2: for all j ∈ {1, . . . , |x̄|+ |ȳ|} do
3: i = d j/2e
4: if j is even then a j←max(max(x(i+2),y(i)),min(x(i+1),y(i−1)))
5: else a j←min(max(x(i+1),y(i−1)),min(x(i),y(i−2)))

6: return ā
Ensure: The output is sorted and is a permutation of the inputs.

Network 3 oe 4merges
k

Input: A tuple of sorted sequences 〈w̄, x̄, ȳ, z̄〉, where 1 ≤ k ≤ s = |w̄|+ |x̄|+ |ȳ|+ |z̄| and k ≥
|w̄| ≥ |x̄| ≥ |ȳ| ≥ |z̄|.

1: if |x̄|= 0 then return w̄
2: if |w̄|= 1 then return selectsk(w̄ :: x̄ :: ȳ :: z̄) . Note that s≤ 4 in this case

3: sa = d|w̄|/2e+ d|x̄|/2e+ d|ȳ|/2e+ d|z̄|/2e; ka = min(sa,bk/2c+2);
4: sb = b|w̄|/2c+ b|x̄|/2c+ b|ȳ|/2c+ b|z̄|/2c; kb = min(sb,bk/2c)
5: ā← oe 4mergesa

ka
(w̄odd, x̄odd, ȳodd, z̄odd) . Recursive calls.

6: b̄← oe 4mergesb
kb
(w̄even, x̄even, ȳeven, z̄even)

7: return oe 4combineka+kb
k (pref(ka, ā), pre f (kb, b̄)) :: suff(ka +1, ā) :: suff(kb +1, b̄)

Ensure: The output is top k sorted and is a permutation of the inputs.

3.2 4-Odd-Even Merging Network

In this section we give the detailed construction of the network oe 4merge – the 4-Odd-
Even Merger – that merges four sequences (columns) obtained from the recursive calls
in Network 1. We can assume that input columns are sorted and of length at most k.

The network is presented in Network 3. The input to the procedure is 〈pref(k1, ȳ1),
. . ., pref(k4, ȳ4)〉, where each ȳi is the output of the recursive call in Network 1. The goal
is to return the k largest (and sorted) elements. It is done by splitting each input sequence
into two parts, one containing elements of odd index, the other containing elements of
even index. Odd sequences and even sequences are then recursively merged (lines 5–6)
into two sequences ā and b̄ that are top k sorted. The sorted prefixes are then combined
by oe 4combine into a sorted sequence to which the suffixes of ā and b̄ are appended.
The result is top k sorted.

Our network is the generalization of the classic Multiway Merge Sorting Network
by Batcher and Lee [6], where we use 4-way mergers and each merger consists of two
sub-mergers and a combine sub-network. The goal of our network is to select and sort
the k largest items of four sorted input sequences. The combine networks are described
and analyzed in [6]. The goal of them is to correct a small, unordered part that can
appear after zipping the two input sequences x̄ = pref(ka, ā) and ȳ = pref(kb, b̄) (by
”zipping” we mean producing a sequence 〈x1,y1,x2,y2, . . .〉). Since x̄ can contain up
to 4 more 1’s than ȳ, it is enough to apply two sets of comparators: in the first set

8 Michał Karpiński, Marek Piotrów

compare-and-exchange yi with xi+2, i = 1,2, . . . , and in the second one compare-and-
exchange even with odd items in the output of the first set. For example, if x̄ = 1m+30∗

and ȳ = 1m0∗ for some m ∈N, then after the zip operation, the resulting sequence looks
like 12m+101010∗, therefore we need just one comparator ym+1 : xm+3 to fix the order
and make the sequence sorted.

Let ā = oe 4combineka+kb
k (x̄, ȳ), that is, a2i (a2i−1), i = 1, . . . is defined by the

equation in line 4 (line 5, respectively) of Network 2. They correspond to the two
described-above sets of comparators. In our implementation the equations are encoded
into clauses, in such a way, that in average we use 2 new variables and 5 clauses for each
pair of comparators: if 1’s should be propagated from inputs to outputs then (1) yi⇒ a2i,
(2) xi+2⇒ a2i, (3) yi−1 ∧ xi+1⇒ a2i, (4) yi−1 ∧ xi⇒ a2i−1 and (5) yi−2 ∧ xi+1⇒ a2i−1
or, otherwise: (1) a2i⇒ yi−1∨xi+2, (2) a2i⇒ yi∨xi+1, (3) a2i−1⇒ xi, (4) a2i−1⇒ yi−2
and (5) a2i−1 ⇒ yi−1 ∨ xi+1. If each comparator is encoded separately, we need 4 new
variables and 6 clauses for a pair of comparators. Therefore, we can save about k new
variables and k/2 clauses for each oe 4combine4k

k . This is the main advantage of using
4-way mergers instead of odd-even mergers.

Example 4. In Figure 2, in dashed lines, a schema of 4-Odd-Even merger is presented
with s = 9, k = 3, k1 = 3 and k2 = k3 = k4 = 2. First, the input columns are split
into two by odd and even indexes, and the recursive calls are made. After that, a com-
bine operation fixes the order of elements, to output the 3 largest ones. For more de-
tailed example of Network 3, assume that k = 6 and w̄ = 100000, x̄ = 111000, ȳ =
100000, z̄ = 100000. Then ā = oe 4merge12

5 (100,110,100,100) = 111110000000 and
b̄ = oe 4merge12

3 (000,100,000,000) = 100000000000. The combine operation gets
x̄ = pref(5, ā) = 11111 and ȳ = pref(3, b̄) = 100. Notice that |x̄|1 − |ȳ|1 = 4 and af-
ter zipping we get 11101011. Thus, two comparators from the first set are needed to fix
the order.

Theorem 2. The output of Network 3 is top k sorted.

Due to the space limitations a proof will be given in the full version of the paper.

4 Comparison of Odd-Even Selection Networks

In this section we would like to estimate and compare the number of variables and
clauses in encodings based on our algorithm to other encoding based on odd-even se-
lection. Such encoding – which we call 2-Odd-Even Selection Network – was already
analyzed by Codish and Zazon-Ivry [8]. We start by counting how many variables and
clauses are needed in order to merge 4 sorted sequences returned by recursive calls of
4-Odd-Even Selection Network and 2-Odd-Even Selection Network. Then, based on
those values we prove that overall number of variables and clauses is almost always
smaller when using 4-column encoding rather than 2-column encoding. In the next sec-
tion we show that the new encoding is not just smaller, but also have better solving
times in many benchmark instances.

To simplify the presentation we assume that k ≤ n/4 and both k and n are the pow-
ers of 4. We also omit the ceiling and floor function in the calculations, when it is
convenient for us.

Encoding Cardinality Constraints using Multiway Merge Selection Networks 9

Definition 4. Let n,k ∈N. For given (selection) network f n
k let V (f n

k) and C(f n
k) denote

the number of variables and clauses used in the standard CNF encoding of f n
k .

We remind the reader that a single 2-comparator uses 2 auxiliary variables and 3
clauses. In case of a 4-comparator the numbers are 4 and 15.

We count how many variables and clauses are needed in order to merge 4 sorted
sequences returned by recursive calls of 2-Odd-Even Selection Network and 4-Odd-
Even Selection Network, respectively. Two-column selection network using odd-even
approach is presented in [8]. We briefly introduce this network with the following three-
step recursive procedure (omitting the base case):

1. Split the input x̄ ∈ {0,1}n into two sequences x̄1 = x̄odd and x̄2 = x̄even.
2. Recursively select top k sorted elements from x̄1 and top k sorted elements from x̄2.
3. Merge the outputs of the previous step using an 2-Odd-Even Merging Network of

order (2k,k) and output the top k from 2k elements.

If we treat the merging step as a network oe 2merge2k
k , then the number of 2-

comparators used in the 2-Odd-Even Selection Network of order (n,k) can be written
as:

|oe 2seln
k |=

2|oe 2seln/2
k |+ |oe 2merge2k

k | if k < n
|oe sortk| if k = n
|maxn| if k = 1

(1)

One can check that Step 3 requires |oe 2merge2k
k | = k logk+ 1 2-comparators (see

[8]), which leads to the simple lemma.

Lemma 1. V (oe 2merge2k
k) = 2k logk+2, C(oe 2merge2k

k) = 3k logk+3.

The schema of this network is presented in Figure 3. In order to count the number of
comparators used in merging 4 sorted sequences we need to expand the recursive step
by one level (see Figure 3b).

Now we do the counting for our 4-way merging network based on Network 3.

Lemma 2. Let k ∈ N, then: V (oe 4merge4k
k) ≤ (k−2) logk+5k−1; C(oe 4merge4k

k)

≤ (5
2 k−5) logk+21k−6.

Proof. We separately count the number variables and clauses used.
In the base case (line 2) we can assume – for the sake of the upper bound – that we

always use 4-comparators. Notice, that the number of 4-comparators is only dependent
on the variable s. The solution to the following recurrence gives the sought number:
{A(4) = 1;A(s) = 2A(s/2), for s > 4}, which is equal to s/4. Therefore we use s auxil-
iary variables and (15/4)s clauses. We treat the recursive case separately below.

The number of variables used in the combine network is at most k− 1, because a
new variable is not needed for ai, where i > k, because such ai can be replaced by a zero
in clauses containing it, and not for a1 = x1. Therefore, the total number of variables is
bounded by solution to the following recurrence:

10 Michał Karpiński, Marek Piotrów

oe_2seln/2
k

oe_2sel n/2
k

oe
_2

m
er

ge
2k k

(a) one step

oe
_2

m
er

ge
2k k

 oe_2selk
n/4

 oe_2selk
n/4

 oe_2selk
n/4

 oe_2sel k
n/4

oe
_2

m
er

ge
2k k

oe
_2

m
er

ge
2k k

(b) two steps

Fig. 3. 2-Odd-Even Selection Network

B(s,k) =

{
0 if s≤ 4
B(sa,ka)+B(sb,kb)+ k−1 otherwise

where k ≤ s = sa + sb ≤ 4k, sb ≤ sa ≤ sb + 4 and ka = min(sa,bk/2c+ 2) and kb =
min(sb,bk/2c). Therefore s/2 ≤ sa ≤ s/2+ 2, s/2− 2 ≤ sb ≤ s/2, ka ≤ k/2+ 2 and
kb ≤ k/2. We claim that B(s,k)≤ (k−2)(logs−2)+ 1

4 s−1. This can be easily verified
by induction.

The upper bound of the number of clauses can now be easily computed noticing
that in the combine we require either 2 or 3 clauses for each new variable (depending
on the parity of the index), therefore the number of clauses in the combiner is bounded
by 2.5×#vars+3.5. Constant factor 3 is added because additional clauses can be added
for values ak+1 and ak+2 (see equations in Section 3.2). The overall number of clauses
in the merger (omitting base cases) is then at most 2.5 ·B(s,k)+3.5(k−1), where factor
(k−1) is the upper bound on the number of combines used in the recursive tree of the
merger. Elementary calculations give the desired result.

Combining Lemmas 1 and 2 gives the following corollary.

Corollary 1. Let k ∈N. Then 3V (oe 2merge2k
k)−V (oe 4merge4k

k)≥ (5k+2) log(k
2)+

9 ≥ 0, and for k ≥ 8, 3C(oe 2merge2k
k)−C(oe 4merge4k

k) ≥ (13
2 k + 5) log(k

8)−
3
2 k +

30≥ 0.

This shows that using our merging procedure gives a smaller encoding than its 2-
column counterpart and the differences in the number variables and clauses used is
significant.

The main result of this section is as follows.

Encoding Cardinality Constraints using Multiway Merge Selection Networks 11

Theorem 3. Let n,k ∈N such that 1≤ k≤ n/4 and n and k are both powers of 4. Then:

dsVk(n) =V (oe 2seln
k)−V (oe 4seln

k)≥
(n− k)(5k+2)

3k
log
(

k
2

)
+3
(n

k
−1
)
.

Proof. Let dVk = 3V (oe 2merge2k
k)−V (oe 4merge4k

k) (from Corollary 1), then:

dsVk(n) =V (oe 2seln
k)−V (oe 4seln

k)

= 2V (oe 2seln/2
k)+V (oe 2merge2k

k)−4V (oe 4seln/4
k)−V (oe 4merge4k

k)

= 4V (oe 2seln/4
k)+3V (oe 2merge2k

k)−4V (oe 4seln/4
k)−V (oe 4merge4k

k)

= 4dsVk(n/4)+dVk

The solution to the above recurrence is dsVk(n)≥ 1
3 (

n
k −1)dVk. Therefore:

dsVk(n)≥
1
3

(n
k
−1
)(

(5k+2) log
(

k
2

)
+9
)

=
(n− k)(5k+2)

3k
log
(

k
2

)
+3
(n

k
−1
)
.

Similar theorem can be proved for the number of clauses (when k ≥ 8).

5 Experimental Evaluation

As it was observed in [1], having a smaller encoding in terms of number of variables
or clauses is not always beneficial in practice, as it should also be accompanied with a
reduction of SAT-solver runtime. In this section we assess how our encoding based on
the new family of selection networks affect the performance of a SAT-solver.

5.1 Methodology

Our algorithms that encode CNF instances with cardinality constraints into CNFs were
implemented as an extension of MINICARD ver. 1.1, created by Mark Liffiton and Jor-
dyn Maglalang1. MINICARD uses three types of solvers:

– minicard - the core MINICARD solver with native AtMost constraints,
– minicard encodings - a cardinality solver using CNF encodings for AtMost con-

straints,
– minicard simp encodings - the above solver with simplification / pre-processing.

1 See https://github.com/liffiton/minicard

12 Michał Karpiński, Marek Piotrów

The main program in minicard encodings has an option to generate a CNF formula,
given a CNFP instance (CNF with the set of cardinality constraints) and to select a type
of encoding applied to cardinality constraints. Program run with this option outputs a
CNF instance that consists of collection of the original clauses with the conjunction
of CNFs generated by given method for each cardinality constraint. No additional pre-
processing and/or simplifications are made. Authors of minicard encodings have imple-
mented six methods to encode cardinality constraints and arranged them in one library
called Encodings.h. Our modification of MINICARD is that we added implementation
of the encoding presented in this paper and put it in the library Encodings MW.h. Then,
for each CNFP instance and each encoding method, we used MINICARD to generate
CNF instances. After preparing, the benchmarks were run on a different SAT-solver.
Our extension of MINICARD, which we call KP-MINICARD, is available online2.

In our evaluation we use the state-of-the-art SAT-solver COMINISATPS by Chan-
seok Oh3 [14], which have collectively won six medals in SAT Competition 2014 and
Configurable SAT Solver Challenge 2014. Moreover, the modification of this solver
called MAPLECOMSPS won the Main Track category of SAT Competition 20164. All
experiments were carried out on the machines with Intel(R) Core(TM) i7-2600 CPU @
3.40GHz.

Detailed results are available online5. We publish spreadsheets showing running
time for each instance, speed-up/slow-down tables for our encodings, number of time-
outs met and total running time.

5.2 Encodings

We use our multi-column selection network for evaluation – the 4-Odd-Even Selection
Network (4OE) based on Networks 1, 2 and 3. We compare our encoding to some oth-
ers found in the literature. We consider the Pairwise Cardinality Networks [8]. We also
consider a solver called MINISAT+6 which implements techniques to encode Pseudo-
Boolean constraints to propositional formulas [9]. Since cardinality constraints are a
subclass of Pseudo-Boolean constraints, we can measure how well the encodings used
in MINISAT+ perform, compared with our methods. The solver chooses between three
techniques to generate SAT encodings for Pseudo-Boolean constraints. These convert
the constraint to: a BDD structure, a network of binary adders, a network of sorters.
The network of adders is the most concise encoding, but it can have poor propagation
properties and often leads to longer computations than the BDD based encoding. The
network of sorters is the implementation of classic odd-even (2-column) sorting net-
work by Batcher [5]. Calling the solver we can choose the encoding with one of the pa-
rameters: -ca, -cb, -cs. By default, MINISAT+ uses the so called Mixed strategy, where
program chooses which method (adders, BDDs or sorters) to use in the encodings. We
don’t include Mixed strategy in the results, as the evaluation showed that it performs

2 See https://github.com/karpiu/kp-minicard
3 See http://cs.nyu.edu/%7echanseok/cominisatps/
4 See http://baldur.iti.kit.edu/sat-competition-2016/
5 See http://www.ii.uni.wroc.pl/%7ekarp/sat/2018.html
6 See https://github.com/niklasso/minisatp

Encoding Cardinality Constraints using Multiway Merge Selection Networks 13

almost the same as -cb option. The generated CNFs were written to files with the option
-cnf=<file>. Solver MINISAT+ have been slightly modified, namely, we fixed a pair of
bugs such as the one reported in the experiments section of [4].

To sum up, here are the competitors’ encodings used in this evaluation:

– PCN - the Pairwise Cardinality Networks (our implementation),
– CA - encodings based on Binary Adders (from MINISAT+),
– CB - encodings based on Binary Decision Diagrams (from MINISAT+),
– CS - the 2-Odd-Even Sorting Networks (from MINISAT+).

Encodings 4OE and PCN were extended, following the idea presented in [1], where
authors use Direct Cardinality Networks in their encodings for sufficiently small values
of n and k. Values of n and k for which we substitute the recursive calls with Direct
Cardinality Network were selected based on the optimization idea in [1]. We minimize
the function λ ·V +C, where V is the number of variables and C the number of clauses
to determine when to switch to direct networks, and following authors’ experimental
findings, we set λ = 5.

Additionally, we compare our encodings with two state-of-the-art general purpose
constraint solvers. First is the PBLIB ver. 1.2.1, by Tobias Philipp and Peter Steinke
[16]. This solver implements a plethora of encodings for three types of constraints:
at-most-one, at-most-k (cardinality constraints) and Pseudo-Boolean constraints. The
PBLIB automatically normalizes the input constraints and decides which encoder pro-
vides the most effective translation. One of the implemented encodings for at-most-k
constraints is based on the sorting network from the paper by Abı́o et al. [1]. One part of
the PBLIB library is the program called PBEncoder which takes an input file and trans-
late it into CNF using the PBLIB. We have generated CNF formulas from all benchmark
instances using this program, then we have run COMINISATPS on those CNFs. Results
for this method are labeled PBE in our evaluation.

The second solver is the NPSOLVER by Norbert Manthey and Peter Steinke7, which
is a Pseudo-Boolean solver that translates Pseudo-Boolean constraints to SAT similar
to MINISAT+, but which incorporates novel techniques. We have exchanged the SAT-
solver used by default in NPSOLVER to COMINISATPS because the results were better
with this one. Results for this method are labeled NPS in our evaluation.

5.3 Benchmarks

The set of benchmarks we used is PB15 suite, which is a set of instances from the
Pseudo-Boolean Evaluation 20158. One of the categories of the competition was DEC-
LIN-32-CARD, which contains 2289 instances – we use these in our evaluation. Every
instance is a collection of cardinality constraints.

7 See http://tools.computational-logic.org/content/npSolver.php
8 See http://pbeva.computational-logic.org/

14 Michał Karpiński, Marek Piotrów

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
400

600

800

1000

1200

1400

1600

1800

PCN

4OE

CA

CB

CS

PBE

NPS

Number of solved instances

T
im

e
in

 s
ec

on
ds

Fig. 4. The number of solved instances of PB15 suite in given time.

5.4 Results

The time-out limit in the SAT-solver was set to 1800 seconds. When comparing two
encodings we only considered instances for which at least one achieved the SAT-solver
runtime of at least 10% of the time-out limit. All other instances were considered trivial,
and therefore were not included in the speed-up/slow-down results. We also filtered out
instances for which relative percentage deviation of the running time of encoding A
w.r.t. the running time of encoding B was less than 10% (and vice-versa).

In Figure 4 we present a cactus plot, where x-axis gives the number of solved in-
stances of PB15 suite and the y-axis the time needed to solve them (in seconds) using
given encoding. From the plot we can see that the 4OE encoding outperforms all other
encodings.

Table 1 presents speed-up and slow-down factors for encoding 4OE w.r.t. all other
encodings. From the evaluation we can conclude that the best performing encoding is
4OE. From the data presented in Table 1 our encoding achieve better speed-up factor
w.r.t. all other encodings. Total running time for 4OE is 629.78 hours on all 2289 in-
stances. All other encodings required more time to finish the computation. Also, 4OE
solved the most number of instances – 1095. The second to last column of Table 1
shows the difference in total running time of all encodings w.r.t. 4OE (in HH:MM for-
mat – hours and minutes). The last column indicates the difference in the number of
solved instances of all encodings w.r.t. 4OE (here all instances are counted, even the
trivial ones). We can see, for example, that for 4OE computations finished about 7 hours
sooner for 4OE than CS. This shows that using 4-column selection networks is more
desirable than using 2-column selection/sorting networks for encoding cardinality con-
straints. Encodings CA and CS had the worst performance on PB15 suite. We can also
see that even the state-of-the-art constraint solvers have larger running times and solved

Encoding Cardinality Constraints using Multiway Merge Selection Networks 15

4OE speed-up 4OE slow-down
TO 4.0 2.0 1.5 1.1 Total TO 4.0 2.0 1.5 1.1 Total Time dif. #s dif.

PCN 9 11 5 5 5 35 1 2 1 3 3 10 +02:55 -8
CA 22 15 28 21 21 107 5 3 5 4 11 28 +10:54 -17
CB 18 11 15 8 24 76 7 2 6 3 28 46 +04:54 -11
CS 27 13 14 13 18 85 3 0 18 14 13 48 +06:55 -24
PBE 15 13 10 10 20 68 6 16 5 6 27 60 +02:48 -9
NPS 17 15 7 11 29 67 5 16 6 5 26 58 +03:51 -12

Table 1. Comparison of encodings in terms of SAT-solver runtime on PB15 suite. We count
number of benchmarks for which 4OE showed speed-up or slow-down factor with respect to
different encodings, the difference in total running time of each encoding w.r.t. 4OE and the
difference in the number of solved instances of each encoding w.r.t. 4OE.

less instances on this set of benchmarks, as PBE and NPS finished computations more
than about 3–4 hours later than 4OE.

6 Conclusions

In this paper we presented a multi-column selection network based on odd-even ap-
proach, that can be used to encode cardinality constraints. We showed that its CNF en-
coding is smaller than the 2-column version. We extended the encoding by applying the
Direct Cardinality Networks of [1] for sufficiently small input. The new encoding was
compared with the selected state-of-the-art encodings based on comparator networks,
adders and binary decision diagrams as well as with two popular general constraints
solvers. The experimental evaluation shows that the new encoding yields better speed-
up and overall runtime in the SAT-solver performance.

Developing new methods to encode cardinality constraints based on comparator
networks is important from the practical point of view. Using such encodings gives
an extra edge in solving optimization problems for which we need to solve a series
of problems that differ only in that a bound on cardinality constraint x1 + · · ·+ xn ≤ k
becomes tighter, i.e., by decreasing k to k′. In this setting we only need to add one more
clause ¬yk′ , and the computation can be resumed while keeping all the previous clauses
untouched. This operation is allowed because if a comparator network is a k-selection
network, then it is also a k′-selection network, for any k′ < k. This property is called
incremental strengthening and most state-of-art SAT-solvers provide an interface for
doing this.

On a final note, we would like to point out that the construction can be used to
encode Pseudo-Boolean constraints, which are more expressive than cardinality con-
straints. Application of sorting networks in this setup was already reported by Eén and
Sörensson [9] and others. Applying our algorithm instead of standard Odd-Even or Pair-
wise Sorting Networks can lead to increase in the number of solved instances. In fact,
we have developed a PB-solver which we call KP-MINISAT+ [11], which uses the al-
gorithm presented in this paper. The code is available online9 as well as results of the
experimental evaluation10.

9 See https://github.com/karpiu/kp-minisatp
10 See http://www.ii.uni.wroc.pl/%7ekarp/pos/2018.html

16 Michał Karpiński, Marek Piotrów

References

1. Abı́o, I., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: A Parametric Approach
for Smaller and Better Encodings of Cardinality Constraints. In: C. Schulte, (ed), Principles
and Practice of Constraint Programming - CP 2013, LNCS, vol. 8124, pp. 80–96. Springer
Heidelberg, (2013).

2. Ası́n, R., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: Cardinality networks: a
theoretical and empirical study. Constraints, 16(2):195–221, (2011).

3. Ası́n, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT.
Annals of Operations Research, 218(1):71–91, (2014).

4. Aavani, A., Mitchell, D.G., Ternovska, E.: New encoding for translating pseudo-Boolean
constraints into SAT. In: Frisch, A.M., Gregory, P. (eds.) SARA, AAAI (2013).

5. K. E. Batcher.: Sorting networks and their applications. In: Proc. of the April 30–May 2,
1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pp. 307–314, ACM, New
York, NY, USA, (1968).

6. K. E. Batcher, Lee, D.: A Multiway Merge Sorting Network. In: IEEE Transactions on
Parallel and Distributed Systems, Vol. 6, No. 2, February 1995, pp. 211–215.

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs.
In: Proc. of 5th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’99), LNCS vol. 1579, pp. 193–207, Springer Heidelberg
(1999).

8. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: E. Clarke and A. Voronkov,
(eds), Logic for Programming, Artificial Intelligence, and Reasoning, LNCS vol. 6355, pp.
154–172. Springer Heidelberg (2010).

9. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Sat-
isfiability, Boolean Modeling and Computation, 2:1–26, (2006).

10. Karpiński, M.: Encoding cardinality constraints using standard encoding of generalized se-
lection networks preserves arc-consistency. Theoretical Computer Science, vol. 707, pp.
77–81, (2018).

11. Karpiński, M., Piotrów, M.: Competitive Sorter-based Encoding of PB-Constraints into SAT.
To appear in the proceedings of Pragmatics of SAT 2018 Workshop, (2018).

12. Karpiński, M., Piotrów, M.: Smaller Selection Networks for Cardinality Constraints En-
coding. In: G. Pesant, (ed), Principles and Practice of Constraint Programming - CP 2015,
LNCS, vol. 9255, pp. 210-225. Springer International Publishing, (2015).

13. Knuth, D. E.: The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and Search-
ing. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, (1998).

14. Oh, Ch.: Improving SAT Solvers by Exploiting Empirical Characteristics of CDCL. PHD
thesis, New York University, (2016).

15. Parberry, I.: The pairwise sorting network. Parallel Processing Letters, 2:205–211, (1992).
16. Philipp, T., Steinke, P.: PBLib – A Library for Encoding Pseudo-Boolean Constraints into

CNF. Theory and Applications of Satisfiability Testing – SAT 2015, LNCS, vol. 9340, pp.
9–16. Springer International Publishing, (2015).

17. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Why cumulative decomposition is not as bad
as it sounds. In: I. Gent, (ed), Principles and Practice of Constraint Programming - CP 2009,
LNCS, vol. 5732, pp. 746–761. Springer Heidelberg, (2009).

