Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

André Ciré
University of Toronto

John Hooker
Carnegie Mellon University

INFORMS 2014
Home Health Care

• Home health care delivery problem.
 – Assign **nurses** to homebound **patients**.
 • …subject to constraints on nurse qualifications.
 – **Route** each nurse through assigned patients, observing **time windows**.
Home Health Care

• Home health care delivery problem.
 – Assign nurses to homebound patients.
 • …subject to constraints on nurse qualifications.
 – Route each nurse through assigned patients, observing time windows.
 • Additional constraints and work rules.
 • One patient may require a team of nurses.
Home Health Care

• A large industry, and rapidly growing.
 – Roughly as large as all courier and delivery services.

Relative Size of Two Industries

<table>
<thead>
<tr>
<th></th>
<th>Home health care</th>
<th>Courier and delivery services</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. revenues, $ billions</td>
<td>75</td>
<td>93</td>
</tr>
<tr>
<td>U.S. workers, millions</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>World revenue, $ billions</td>
<td>196</td>
<td>206</td>
</tr>
</tbody>
</table>
Home Health Care

- A large industry, and **rapidly growing**.
 - Roughly as large as all courier and delivery services.

Projected Growth of Home Health Care Industry

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. revenues, $ billions</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>World revenues, $ billions</td>
<td>196</td>
<td>306</td>
</tr>
</tbody>
</table>

Increase in U.S. Employment, 2010-2020

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Home health care industry</td>
<td>70%</td>
</tr>
<tr>
<td>Entire economy</td>
<td>14%</td>
</tr>
</tbody>
</table>
Home Health Care

- Advantages of home health care
 - Lower cost
 - Hospital space is very expensive.
Home Health Care

• **Advantages of home health care**

 – Lower cost
 • Hospital space is very expensive.

 – No hospital-acquired infections
 • Less exposure to superbugs.
Home Health Care

• **Advantages of home health care**
 – Lower cost
 • Hospital space is very expensive.
 – No hospital-acquired infections
 • Less exposure to superbugs.
 – Preferred by patients
 • Comfortable, familiar surroundings of home.
 • Sense of control over one’s life.
Home Health Care

- Advantages of home health care
 - Lower cost
 - Hospital space is very expensive.
 - No hospital-acquired infections
 - Less exposure to superbugs.
 - Preferred by patients
 - Comfortable, familiar surroundings of home.
 - Sense of control over one’s life.
 - Supported by new equipment & technology
 - IT integration with hospital systems.
Home Health Care

• Critical factor to realize cost savings:
 – Nurses must be **efficiently** scheduled.

• This is our task.
 – Computational results very preliminary.
Benders approach

• Solve the problem using **logic-based Benders decomposition**.
 – Master problem assigns nurses to patients.
 – Subproblem finds **routes** and **schedules** for nurses.
Benders approach

• Solve the problem using logic-based Benders decomposition.
 – Master problem assigns nurses to patients.
 • This is the bottleneck.
 • Use a decision diagram to formulate the master.
 • Master problem becomes a shortest path problem.
 – Subproblem finds routes and schedules for nurses.
Benders approach

• Solve the problem using logic-based Benders decomposition.
 – Master problem assigns nurses to patients.
 • This is the bottleneck.
 • Use a decision diagram to formulate the master.
 • Master problem becomes a shortest path problem.
 – Subproblem finds routes and schedules for nurses.
 • Can’t use classical Benders.
 • Add logic-based Benders cuts to master.
 • This poses a separation problem for the decision diagram.
Benders approach

• Solve the problem using logic-based Benders decomposition.
 – Master problem assigns nurses to patients.
 • This is the bottleneck.
 • Use a decision diagram to formulate the master.
 • Master problem becomes a shortest path problem.
 – Subproblem finds routes and schedules for nurses.
 • Can’t use classical Benders.
 • Add logic-based Benders cuts to master.
 • This poses a separation problem for the decision diagram.
 – Focus on finding feasible solutions.
Logic-based Benders decomposition is a generalization of classical Benders.

- Consider a feasibility problem:
 \[
 \min f(x) \\
 (x, y) \in S
 \]

- Benders cut excludes \(\bar{x}\) (and perhaps similar solutions) if it is infeasible in the subproblem.
- Benders cut based on inference dual
- Algorithm terminates when \(\bar{x}\) is feasible in the subproblem.
Benders Decomposition

- Logic-based Benders decomposition is a generalization of classical Benders.
 - Master problem is initially a relaxation of the original problem over x (warm start).
 - Relaxation becomes tighter as Benders cuts are added.

Subproblem $(\bar{x}, y) \in S$

Master Problem
Optimize over x
subject to Benders cuts

Benders cut

Solution \bar{x}
of master
Logic-based Benders decomposition is a generalization of classical Benders.

- Master problem is initially a relaxation of the original problem over x (warm start).
- Relaxation becomes tighter as Benders cuts are added.
- We will use relaxed decision diagram to represent master problem.

Benders Decomposition

Subproblem $(\bar{x}, y) \in S$

Master Problem
Optimize over x
subject to Benders cuts

Solution \bar{x}
of master

Benders cut
Benders Decomposition

- Logic-based Benders decomposition is a generalization of classical Benders.
 - Master problem is initially a **relaxation** of the original problem over x (warm start).
 - Relaxation becomes **tighter** as Benders cuts are added.
 - We will use **relaxed decision diagram** to represent master problem.
 - Add a Benders cut by creating a **separating decision diagram**.
Home Health Care

- Solve with Benders decomposition.
 - **Assignment problem** in master.
 - Subproblem generates Benders cuts when there is no feasible schedule for one or more nurses.
 - Each cut excludes a **partial assignment** of nurses to patients that **causes infeasibility**.
Home Health Care

• Solve with Benders decomposition.
 – Assignment problem in master.
 – Subproblem generates Benders cuts when there is no feasible schedule for one or more nurses.
 – Each cut excludes a partial assignment of nurses to patients that causes infeasibility.

• How fast does separating decision diagram grow?

Master Problem
BDD relaxation of nurse assignment problem

Subproblem
Decouples into routing and scheduling problem for each nurse.

Solution \bar{x}

Benders cut
Decision Diagrams

- **Binary decision diagrams (BDDs)** historically used for circuit design and verification.
Decision Diagrams

- **Binary decision diagrams (BDDs)** historically used for circuit design and verification.

- **Compact** graphical representation of **boolean** function.
 - Can also represent **feasible set** of problem with binary variables.
 - Easy generalization to **multivalued** decision diagrams (MDDs) for finite domain variables.
Decision Diagrams

• Decision diagram can grow exponentially with problem size.
 – So we use a smaller, relaxed diagram that represents superset of feasible set.
 • Andersen, Hadzic, Hooker, Tiedemann 2007.
 • For graph coloring (alldiff systems), reduced CP search tree from >1 million nodes to 1 node.

• Example: independent set problem on a graph…
Independent Set Problem

Let each vertex have weight w_i

Select nonadjacent vertices to maximize $\sum_{i} w_i x_i$

$x_i = 1$ if vertex i selected
Exact BDD for independent set problem
"zero-suppressed" BDD

X_1

X_2

X_3

X_4

X_5

X_6
Exact BDD for independent set problem

“zero-suppressed” BDD
Paths from top to bottom correspond to the 11 feasible solutions.
Paths from top to bottom correspond to the 11 feasible solutions.
Paths from top to bottom correspond to the 11 feasible solutions.
Paths from top to bottom correspond to the 11 feasible solutions.
Paths from top to bottom correspond to the 11 feasible solutions...

...and so forth
For objective function, associate weights with arcs.
For objective function, associate weights with arcs.

Optimal solution is longest path.
To build BDD, associate **state** with each node.
To build BDD, associate state with each node.
To build BDD, associate **state** with each node.
To build BDD, associate state with each node.
Merge nodes that correspond to the same state
Merge nodes that correspond to the same state
Merge nodes that correspond to the same state.
Width = 2

Merge nodes that correspond to the same state
Relaxation Bounding

• To obtain a bound on the objective function:
 – Use a relaxed decision diagram
 – Analogous to linear programming relaxation in MIP
 – This relaxation is discrete.
 – Doesn’t require the linear inequality formulation of MIP.
To build relaxed BDD, merge some additional nodes as we go along.
To build **relaxed** BDD, merge some additional nodes as we go along.
To build **relaxed** BDD, merge some additional nodes as we go along
To build **relaxed** BDD, merge some additional nodes as we go along.
To build relaxed BDD, merge some additional nodes as we go along.
To build **relaxed** BDD, merge some additional nodes as we go along.
To build \textit{relaxed} BDD, merge some additional nodes as we go along.
To build relaxed BDD, merge some additional nodes as we go along.
To build relaxed BDD, merge some additional nodes as we go along.
Width = 1

Represents 18 solutions, including 11 feasible solutions
Width = 1

Longest path gives bound of 3 on optimal value of 2
Wider BDDs yield tighter bounds.
 – But take longer to build.
Propagation

- We can propagate by removing arcs from the decision diagram.
 - Rather than removing elements from variable domains.
 - More effective than traditional domain filtering.
 - More information propagated from one constraint to the next.
Suppose this is the relaxed decision diagram
Suppose this is the relaxed decision diagram

Suppose other constraints remove 6 from domain of x_1
Suppose this is the relaxed decision diagram

This propagates through the states and removes some arcs.
Suppose this is the relaxed decision diagram

This propagates through the states and removes some arcs.
Optimization with Decision Diagrams

- A relaxed decision diagram can provide framework for branch-and-bound search.
 - Bergman, Cire, van Hoeve, Hooker 2014
- Here, we introduce decision diagrams into Benders methods.
 - Must solve separation problem to implement Benders cuts.
Separation Problem in Optimization

- Given a relaxation of an optimization problem...
- Find a constraint that *separates* solution of the relaxation from the feasible set
Separation Problem in Optimization

- Given a relaxation of an optimization problem...
- Find a constraint that **separates** solution of the relaxation from the feasible set
Separation Problem in Optimization

• Now **strengthen** the relaxation with the separating cut.
 – Cuts are usually linear inequalities.
Separation Problem in Optimization

- Now **strengthen** the relaxation with the separating cut.
 - Cuts are usually linear inequalities.
 - Re-solve relaxation and repeat.
Separation Problem in Optimization

- Separation is a **workhorse** in integer and nonlinear programming.
 - **Gomory** cuts
 - **Mixed integer rounding** cuts
 - Separating **knapsack** cuts
 - Separating **cover** inequalities
 - Separating cuts in special families
 - Subtour elimination, combs for TSP
 - Separating flow cuts for fixed-charge network flow
 - etc. (**huge** literature)
Separation Problem for Decision Diagrams

• Exclude a given partial assignment $x_i = \bar{x}_i$ for $i \in I$.
 – That is, remove all paths in which $x_i = \bar{x}_i$ for $i \in I$.

• Example…
1-arcs from state 1 nodes preserve state 0-arcs switch state to 0.

Original Diagram

Remove partial assignment \((x_2, x_4) = (1, 1)\)
Remove partial assignment $(x_2, x_4) = (1,1)$.
Separation Algorithm

• In principle, a partial assignment can be separated by conjoining two BDDs.

 - However, this introduces an unnecessary data structure.
Separation Algorithm

• We will propose an algorithm specifically for separation.
 – Exposes essential logic of separation.
 – Operates on original data structure.
 – Allows proof of tighter bounds on growth of the separating diagram as cuts are added.
A node has **state 1** when all incoming paths are excluded.

Otherwise **state 0**.

Assign state 1 to root node.
Original BDD

Duplicate arcs leaving \(r \) in original BDD.

Child nodes inherit state of parent node.

Separating BDD

\(x_1 \) unrestricted
Original BDD

Separating BDD

x_1 unrestricted

$x_2 \neq 1$

1-arcs from state 1 nodes
preserve state 1
x_1 unrestricted

$x_2 \neq 1$

1-arcs from state 1 nodes preserve state 1

0-arcs from state 1 nodes switch to state 0
Duplicate arcs in original BDD.

Child nodes inherit state of parent node.
Duplicate arcs from nodes with state 0, preserving state.

\(x_1 \) unrestricted

\(x_2 \neq 1 \)

\(x_3 \) unrestricted

\(x_4 \neq 1 \)
1-arcs from state 1 nodes preserve state
0-arcs switch state to 0.

x_1 unrestricted

$x_2 \neq 1$

x_3 unrestricted

$x_4 \neq 1$
arcs from state 1 nodes preserve state 0 - arcs switch state to 0.

Original BDD

Separating BDD

\(x_1 \) unrestricted

\(x_2 \neq 1 \)

\(x_3 \) unrestricted

\(x_4 \neq 1 \)

\(x_5 \) unrestricted

Terminate paths at nodes with state 1
Size of Separating Diagram

- We wish to separate from a given diagram all solutions \(x \) in which \(x_i = \overline{x}_i \) for \(i \in I \).

Theorem (easy). The separating diagram is at most *twice as large* as the original BDD.

If only one solution is separated, the separating diagram has at most *one additional node per layer*.
Size of Separating Diagram

- We wish to separate from a given diagram all solutions x in which $x_i = \bar{x}_i$ for $i \in I$.

Theorem (easy). The separating diagram is at most twice as large as the original BDD.

If only one solution is separated, the separating diagram has at most one additional node per layer.

- This refers to separating diagram created by the algorithm
 - Not necessarily a reduced (minimal) diagram.
Size of Separating BDD

• We wish to separate from a given BDD all solutions x in which $x_i = \overline{x_i}$ for $i \in I$.
• Let n_i be size of layer i of original BDD.
• Let j,k be smallest, largest indices in I.

Theorem (not so easy).

Size of layer i of separating BDD $\leq \begin{cases} n_i + \varphi_i & \text{if } j \leq i \leq k \\ n_i & \text{otherwise} \end{cases}$

where $\varphi_i = \begin{cases} \min\{n_i, \varphi_{i-1}\} & \text{if } i - 1 \in I \\ \min\{n_i, 2\varphi_{i-1}\} & \text{otherwise} \end{cases}$
Size of Separating BDD

- We wish to separate from a given BDD all solutions x in which $x_i = \overline{x_i}$ for $i \in I$.
- Let n_i be size of layer i of original BDD.
- Let j, k be smallest, largest indices in I.

Corollary Portion of diagram outside the range of indices in I is *unaffected by separation*.

- This will be useful in decomposition methods.
Reduced Separating Diagram

• Separating diagram generated by the algorithm need not be reduced.
 – The reduced diagram for a Boolean function is the smallest diagram that represents the function.
 – It is unique.

• For example…
Original diagram
Original diagram

Diagram that separates $x_2 = 1$ as generated by algorithm
Original diagram

Diagram that separates $x_2 = 1$ as generated by algorithm

Reduced form of separating diagram
Growth of Separating Diagram

- Key question: How fast does the separating diagram grow when a sequence of partial solutions are separated?
 - Traditional LP relaxation grows **linearly**.
 - One inequality constraint added per solution separated.
Worst-Case Growth

• Can **reduced** separating diagram grow exponentially?
 – Yes

• Example
 – Start with diagram that represents all Boolean vectors (width 1).
 – Separate:
 \[
 (1,*,*,...,*,*,1) \\
 (*,1,*,...,*,1,*) \\
 (*,*,1,...,1,*,*) \\
 (*,*,1,...,1,*,*,*) \\
 \text{etc.}
 \]
Reduced diagram for $n = 6$ variables.

It has width $2^{n/2}$
Empirical Growth

- How fast does the separating diagram grow in Benders method for home health care?
Home Health Care

• Reminder…home health care delivery problem.
 – Assign nurses to homebound patients.
 – …subject to constraints on nurse qualifications.
 – Route each nurse through assigned patients, observing time windows.
 – Nurse must take a break if day is long enough.

• Termination.
 – Terminate with feasible solution when all nurse scheduling subproblems are feasible.
Home Health Care

• Reminder…home health care delivery problem.
 – Assign nurses to homebound patients.
 – …subject to constraints on nurse qualifications.
 – Route each nurse through assigned patients, observing time windows.
 – Nurse must take a break if day is long enough.

• Termination.
 – Terminate with feasible solution when all nurse scheduling subproblems are feasible.
Home Health Care

- **Instances.**
 - Scaled-down instances of real-world problem obtained from German firm.
 - Assign 6 nurses to 30 patients, one-day horizon.
Results for 20 instances

<table>
<thead>
<tr>
<th>Instance</th>
<th>Iterations</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>set1-n30r0</td>
<td>9</td>
<td>7.5</td>
</tr>
<tr>
<td>set1-n30r1</td>
<td>24</td>
<td>24.4</td>
</tr>
<tr>
<td>set1-n30r2</td>
<td>116</td>
<td>69.7</td>
</tr>
<tr>
<td>set1-n30r3</td>
<td>46</td>
<td>40.1</td>
</tr>
<tr>
<td>set1-n30r4</td>
<td>31</td>
<td>19.3</td>
</tr>
<tr>
<td>set1-n30r5</td>
<td>78</td>
<td>64.3</td>
</tr>
<tr>
<td>set1-n30r6</td>
<td>30</td>
<td>29.6</td>
</tr>
<tr>
<td>set1-n30r7</td>
<td>29</td>
<td>18.0</td>
</tr>
<tr>
<td>set1-n30r8</td>
<td>1</td>
<td>10.2</td>
</tr>
<tr>
<td>set1-n30r9</td>
<td>2</td>
<td>11.3</td>
</tr>
<tr>
<td>set2-n30r0</td>
<td>9</td>
<td>8.5</td>
</tr>
<tr>
<td>set2-n30r1</td>
<td>24</td>
<td>23.8</td>
</tr>
<tr>
<td>set2-n30r2</td>
<td>51</td>
<td>31.7</td>
</tr>
<tr>
<td>set2-n30r3</td>
<td>46</td>
<td>39.4</td>
</tr>
<tr>
<td>set2-n30r4</td>
<td>33</td>
<td>22.1</td>
</tr>
<tr>
<td>set3-n30r0</td>
<td>8</td>
<td>3.1</td>
</tr>
<tr>
<td>set3-n30r1</td>
<td>56</td>
<td>9.4</td>
</tr>
<tr>
<td>set3-n30r2</td>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>set3-n30r3</td>
<td>242</td>
<td>80.3</td>
</tr>
<tr>
<td>set3-n30r4</td>
<td>820</td>
<td>568.6</td>
</tr>
</tbody>
</table>
Growth of Separating Diagram for All but 3 Instances
Growth of Separating Diagram for 2 Harder Instances
Growth of Separating Diagram for Hardest Instance
Empirical Growth

• Separating diagram grows more or less linearly in all but one instance.
 – Somewhat superlinear in hardest instance.
 – Most diagrams never exceeded width of 100.
 – A width-1000 diagram can be processed in small fraction of a second.

• Hardest instance:
 – Width 16,496.
 – 820 iterations.
 – Final iteration processed in 2.9 seconds, including solution of subproblem.
Conclusions

- Benders + decision diagrams may have promise for the home health care delivery problem.
 - Master problem can be solved quickly as shortest-path problem in decision diagram.
 - Diagram tends to grow linearly as Benders cuts are separated.