Tutorial on Fairness Modeling Part 2: Fairness in Al

John Hooker Carnegie Mellon University

September 2023

Two Tutorials

- Previous tutorial: modeling fairness in optimization models
 - Social welfare functions that incorporate fairness.
 - Practical LP/MILP/NLP models.
 - A bit of social choice theory.
- This tutorial: modeling group fairness in Al
 - Crash course in deontological ethics.
 - Group parity metrics & their assessment.
 - Connections with social welfare functions.

Outline

- Crash course in deontological ethics
 - Basic assumptions
 - Generalization principle
 - Autonomy principle
 - Utilitarian principle
- Group parity
 - Statistical parity metrics
 - Ethical assessment
 - Social welfare and group parity
- Beyond group parity

Reference

Castelnovo et al., A clarification of the nuances in the fairness metrics landscape, *Scientific Reports* **12** (2022).

Basic Assumptions

- Acting for reasons
 - Freely chosen action is based on a rationale.
- Universality of reason
 - Justification is independent of the reasoner.

Basic Assumptions

- Acting for reasons
 - Freely chosen action is based on a rationale.
- Universality of reason
 - Justification is independent of the reasoner.
- We **deduce** ethical principles from these assumptions.
 - This is the **deontological** approach to ethics.
 - **Deontology** = What is required.
 - Ethical principles represent **what is required** for the possibility of free action.

Acting for Reasons

- Basic premise: We always act for a reason.
 - Every action has a rationale.
- Why?
 - This is how we distinguish **freely chosen action** from mere behavior.
 - An MRI machine can detect our decisions **before we make them**.
 - If decisions are determined by biological causes, how can they be freely chosen?

Acting for Reasons

- Solution:
 - Freely chosen actions have two kinds of explanation:
 - A biological cause
 - A rationale provided by the agent
 - For example:
 - A hiccup has only a biological explanation.
 Not a freely chosen action.
 - Drinking water to stop hiccups has
 2 explanations: a biological cause and a rationale. A freely chosen action.

Acting for Reasons

- Dual standpoint theory
 - Originally proposed by Immanuel Kant.
 - Grundlegung zur Metaphysik der Sitten (1785)
 - Recent versions: Nagel (1986), Korsgaard (1996), Nelkin (2000), Bilgrami (2006).
 - Provides a basis for ethics.
 - Ethical principles are necessary conditions for the logical coherence of an action's rationale

Universality of Reason

- What is rational does not depend on who I am.
 - I don't get to have my own logic.
 - In particular, if I view a reason as justifying an action for me, I must view it as justifying the same action for anyone to whom the reason applies.
- The assumption underlies science and all forms of rational inquiry.
 - Ethics assumes nothing more.

Principles

- We sketch **deontological arguments** for three ethical principles.
 - Based on assumptions just stated.
 - Generalization principle
 - Autonomy principle
 - Utilitarian principle

Generalization Principle

• Example

- Suppose I steal a watch from a shop.
- I have 2 reasons:
 - I want a new watch.
 - I won't get caught.
 - Security at the shop is lax.

Generalization Principle

• Example

- Suppose I steal a watch from a shop.
- I have 2 reasons:
 - I want a new watch.
 - I won't get caught.
 - Security at the shop is lax.

- These are not psychological causes or motivations.
 - They are consciously adduced reasons for the theft.
 - There may be other reasons, of course.

- Due to universality of reason, I am making a decision for everyone:
 - All who want a watch and think they won't get caught should steal one.

- Due to universality of reason, I am making a decision for everyone:
 - All who want a watch and think they won't get caught should steal one.
- But I know that if all do this, they will get caught.
 - The shop will install security.
 - My reasons will no longer apply to **me**.
- I am not saying that all these people actually will steal watches.
 - Only that if they did, my reasons would no longer apply.

- My reasons are **inconsistent** with the assumption that people will act on them.
- I am caught in a contradiction.
 - I am deciding that these reasons justify theft for **me**.
 - But I am **not** deciding that these reasons justify theft for **others**.
 - I can't have it both ways.

- My reasons are **inconsistent** with the assumption that people will act on them.
- I am caught in a contradiction.
 - I am deciding that these reasons justify theft for **me**.
 - But I am **not** deciding that these reasons justify theft for **others**.
 - I can't have it both ways.
- More generally...
 - Universal theft merely for personal benefit would undermine the institution of property.
 - Purpose of theft is to benefit from property rights.

Generalization Principle

- It should be rational for me to believe that the reasons for my action are consistent with the assumption that everyone to whom the same reasons apply acts the same way.
 - Historically inspired by Kant's Categorical Imperative, but different and more precise.
 - Takes "rationality" as a primitive and unexplained notion, but this is true to some extent of all science.

Example - Cheating

- What is wrong with cheating on an exam?
- My reasons:
 - I will get a better grade and therefore a better job.
 - I can get away with it.
- I know that these reasons apply to nearly all students.
 - If they act accordingly, grades will be meaningless, or exams strictly proctored.
 - This defeats one or both of my reasons.
 - So, cheating for these reasons **violates** the generalization principle.

Example - Agreements

- Breaking an agreement normally violates the generalization principle.
- Reason:
 - Convenience or profit.
- These reasons apply to most agreements
 - If agreements were broken for mere convenience, it would be impossible to **make** agreements.
 - And therefore impossible to **achieve one's purposes** by **breaking** them.
 - The whole point of having an agreement is that you keep it when **you don't want to keep it**.

Example - Lying

- Lying for mere convenience violates the generalization principle.
 - ...if the reason for lying assumes that people will believe the lie.
 - If everyone lied when convenient, no one would believe the lies.
 - The possibility of **communication** presupposes a certain amount of credibility.

Example - Lying

- Lying can be generalizable, depending on the reasons.
- Popular "counterexample"
 - Similar to one posed in Kant's day.
 - Workers in an Amsterdam office building lied to Nazi police, to conceal whereabouts of Anne Frank and family.

- This is generalizable.
 - If everyone lied for this reason, it would still accomplish the purpose, perhaps even more effectively.
 - There is no need for police to believe the lies.

Scope of the Rationale

- **Scope** = an agent's necessary and jointly sufficient conditions for performing an act.
 - An ambulance driver uses the siren, but with no patient.
 - *His reasons:*
 - He is late picking up his kids at day care, because he misplaced his car keys.
 - The siren will allow him to arrive on time.
 - He can get away with it.
 - This is generalizable
 - These reasons seldom apply to an ambulance driver.
 - But the scope is **too narrow**
 - The details are not necessary.
 - The real reason is that it is important to be on time.

Action Plans

- Since actions always have a rationale, we treat them as **action plans**.
 - If X, then do Y.
 - For example,
 - If I would like to have an item on display in a shop, and I can get away with stealing it, then I will steal it.

Action Plans

- Since actions always have a rationale, we treat them as **action plans**.
 - If X, then do Y.
 - For example,
 - If I would like to have an item on display in a shop, and I can get away with stealing it, then I will steal it.
- An **agent** is a bundle of action plans.
 - ...that are executed when the antecedents are satisfied.
 - This is not intended as a model of human psychology.
 - It is a model of **agency**.

Autonomy

- There is a fundamental obligation to respect **autonomy**.
 - This rules out murder, most coercion, slavery, etc.
 - But autonomy must be carefully defined.

Autonomy

- There is a fundamental obligation to respect **autonomy**.
 - This rules out murder, most coercion, slavery, etc.
 - But autonomy must be carefully defined.
- Autonomy is more than "self-law."
 - I act autonomously when I freely make up my own mind about what to do, based on coherent reasons I give for my decision
 - An **agent** is a being that can act autonomously (sometimes called a "moral agent").
 - Today's "autonomous cars" are not autonomous.

 My action plan is unethical if I am rationally constrained to believe it interferes with the ethical action plan of some other agent.

- I must be **rationally constrained** to believe there is a conflict of action plans.
 - That is, it is **irrational** not to believe this.
 - If someone falls into a maintenance hole I leave uncovered, this is **not** a violation of autonomy.
 - It is only possible/probable that someone will fall in (a violation of the utilitarian principle).

- I must be **rationally constrained** to believe there is a conflict of action plans.
 - That is, it is **irrational** not to believe this.
 - If someone falls into a maintenance hole I leave uncovered, this is **not** a violation of autonomy.
 - It is only possible/probable that someone will fall in (a violation of the **utilitarian principle**).
 - But suppose it has a cover that will collapse when someone steps on it and is on 5th Ave NYC.
 - I am rationally constrained to believe someone will fall in.
 - | violate autonomy.

- Interference with an unethical action plan is not a violation of autonomy.
 - An unethical action plan is not a freely chosen action, because it has no coherent rationale.
 - There is **no denial of agency**.
 - You can defend yourself, because an attack on you is unethical.

- Interference with an unethical action plan is not a violation of autonomy.
 - An unethical action plan is not a freely chosen action, because it has no coherent rationale.
 - There is **no denial of agency**.
 - You can defend yourself, because an attack on you is unethical.
 - Is this a circular reference to "unethical"?
 - We define "unethical" **recursively**.
 - The recursion **begins** with the **generalization** and **utilitarian** principles.
 - An action plan is unethical if it violates the generalization or utilitarian principle, or interferes with an ethical action plan.

- Coercion with informed consent is not a violation of autonomy.
 - An auto manufacturer is rationally constrained to believe that some people will be killed or seriously injured in its cars.
 - This is coercion: it **compels** some customers to be dead or incapacitated.
 - It is no violation of autonomy
 - Drivers and passengers **give informed consent** to the risk.
 - Their action plan is actually, "If I want to travel to point X, and I am not the victim of an accident, then I will travel there by car."
 - We **do** have violation if there is a **hazardous defect** in the car known to the manufacturer but not the customer.

- Coercion with informed consent is not a violation of autonomy.
 - An auto manufacturer is rationally constrained to believe that some people will be killed or seriously injured in its cars.
 - This is coercion: it **compels** some customers to be dead or incapacitated.
 - It is no violation of autonomy
 - Drivers and passengers **give informed consent** to the risk.
 - Their action plan is actually, "If I want to travel to point X, and I am not the victim of an accident, then I will travel there by car."
 - We **do** have violation if there is a **hazardous defect** in the car known to the manufacturer but not the customer.
 - How about pedestrians? Maybe they give informed consent to the **risk of walking on a street**.

- Why a strong "rationally constrained" provision?
 - It is a consequence of the **deontological argument** for the autonomy principle.
 - Strictly speaking, I adopt an **entire action policy** rather than individual action plans.
 - If I am to be rational, the plans must be mutually consistent (same for beliefs in general that I adopt).
 - Inconsistency is a strong condition: I am rationally constrained to acknowledge it.
 - The **universality of reason** says that when adopting a policy, I adopt it for **everyone** (Kant says I "legislate").
 - So, the action plans I rationally attribute to **everyone** must be mutually consistent.
 - If I adopt a plan that **conflicts** with the plans I rationally attribute to others, I am **rationally constrained** to acknowledge the inconsistency.
 - My policy is **irrational** and therefore **unethical**.

Utilitarian Principle

- This principle asks us to maximize total net expected "utility."
 - As best we can estimate it.
 - *"Greatest good for the greatest number," in Jeremy Bentham's formulation.*
 - Utility = what the agent regards as inherently valuable.
 - That is, the end(s) to which one's actions are a means.
 - It was happiness/pleasure for classical utilitarians.
 - There must be an **ultimate end** to avoid infinite regress in the rationale for an act.

Utilitarian Principle

- Deontological argument in brief.
 - Due to **universality of reason**, if I regard an end as intrinsically valuable, I must regard it as valuable for **anyone**.
 - It shouldn't matter who I am.
 - My actions should take everyone else's utility as seriously as my own.
 - This may not imply strict maximization of net expected utility, but we assume so for now.
 - For example, it may require some degree of distributive justice, as in the difference principle of John Rawls.

Utilitarian Principle

- What about **futility arguments**?
 - My commanding officer orders me to torture a prisoner.
 - The results are the same (or worse) if I refuse, as **someone else** will obey the order.
 - This shows that the torture passes the **utilitarian** test.

Abu Ghraib Prison, Iraq

Utilitarian Principle

- What about **futility arguments**?
 - My commanding officer orders me to torture a prisoner.
 - The results are the same (or worse) if I refuse, as **someone else** will obey the order.
 - This shows that the torture passes the utilitarian test.
 - Yet it violates the prisoner's **autonomy**.
 - The willingness of others to do it is irrelevant.
 - What matters is the incompatibility of action plans.

Abu Ghraib Prison, Iraq

Machine Ethics

- Nothing in deontological ethics presupposes that agents are **human**.
 - A reasons-responsive machine can, in principle, be an *autonomous agent*.
 - It **explains** the rationale for its actions on demand.
 - It doesn't matter if its actions are determined by a program (our actions are determined).
 - It can have obligations to us, and we to it.
 - Although **utilitarian** obligations are tricky for machines.
 - Since they are **nonhuman**.

- Intended to measure bias against a subgroup.
 - Most are based on statistical measures of classification error.
 - Generally based on **yes-no decisions**, not directly on utilitarian consequences.
 - For example, mortgage loans, university admissions, job interviews, parole decisions.
- Rationale
 - Group disparities generally seen as unfair.
 - Bias may incur legal problems.
 - Problem
 - Group parity carries a heavy cultural burden, but it is **fundamentally vague**.

Example – Mortgage Loans

- Latent bias can occur even when majority/majority status is not a criterion.
 - Financially irresponsible applicants may live in a **low-income neighborhood**.
 - Members of a *minority group* may also live in the neighborhood due to historical discrimination.
 - The AI predictor sees the correlation between minority status and past defaults.

 Minority applicant is denied a mortgage, even if financial irresponsibility is not the cause of past defaults in the minority group.

Measuring Bias

- Notation
 - **TP** = number of **true positives** (correct yes's)
 - **FP** = number of **false positives** (incorrect yes's)
 - **TN** = number of **true negatives** (correct no's)
 - **FN** = number of **false negatives** (incorrect no's)
- Basic model
 - **Compare various statistics** across groups (e.g., majority and a minority group).

- Demographic parity
 - Compare $\frac{TP + FP}{TP + TN + FP + FN}$ across groups.
 - Rationale?

Dwork et al. 2012

- Compares fraction of persons selected in each group. Equality of outcomes.
- Possible problems
 - Ignores efficiency vs correctness issue.
 - Can discriminate against a minority group that is more qualified than majority group.

- Rationale?
 - Compares fraction of **qualified** (or unqualified) persons selected.

Hardt et al. 2016

- Possible problem
 - Fails to correct for historical injustice that may cause minorities to be less qualified.

- Predictive rate parity
 - Compare $\frac{TP}{TP + FP}$ across groups.
 - Rationale?
 - Compares fraction of **selected** individuals that are **in fact qualified**.

Dieterich et al. 2016

- Possible problem
 - Parity can be achieved when very few minority applicants are selected.

Counterfactual fairness

- Rationale?
 - Attempts to determine whether minority individuals would be selected if they had been members of the majority.
 - Computes conditional probabilities in
 Bayesian (causal) networks to isolate true cause of past defaults.

Counterfactual fairness

- Problems
 - Difficult to identify factors (for inclusion in the network) that correlate with qualification status but do not "cause" them.
 - Even if factors are identified, very rich dataset required to back out conditional probabilities.

- General problems of fairness metrics
 - Yes-no decisions provide a limited perspective on **utility consequences**.
 - There is no consensus on **which bias metric** is suitable for a given context.
 - No principle for **balancing fairness and efficiency**.
 - No clear principle for **selecting protected groups**
 - Unless one simply selects those protected by law.

- Types of preferential treatment
 - Weak
 - Minority individuals favored only to correct for latent bias against them due to prediction error.
 - Results in more **accurate** selection of qualified individuals.
 - But requires explicit consideration of minority status.
 - Strong
 - Minority individuals selected even when less qualified.
 - Objective is to correct for **historical bias** that makes minority individuals less likely to be qualified.
 - Again, requires explicit consideration of minority status.

- Types of preferential treatment
 - Weak
 - Minority individuals favored only to correct for latent bias against them due to prediction error.
 - Results in more **accurate** selection of qualified individuals.
 - But requires explicit consideration of minority status.
 - Strong
 - Minority individuals selected even when less qualified.
 - Objective is to correct for **historical bias** that makes minority individuals less likely to be qualified.
 - Again, requires explicit consideration of minority status.
- Basic ethical question: which (if either) of these is justified?

• Utilitarian principle applied to mortgage loans

- Analysis may differ for other types of decisions!
- Preferential treatment in the weak sense
 - Results in **greater utility** than no preference, due to greater accuracy.
 - Defaults are bad for everyone.

• Utilitarian principle applied to mortgage loans

- Analysis may differ for other types of decisions!
- Preferential treatment in the weak sense
 - Results in **greater utility** than no preference, due to greater accuracy.
 - Defaults are bad for everyone.
- Preferential treatment in the strong sense
 - Possibility of error tends to reduce utility due to defaults.
 - However, greater opportunity for minorities may increase utility, due to reduced economic inequality in the community, and removal of barriers that tend to make minority individuals less qualified in the future.

• Utilitarian principle applied to mortgage loans

- Analysis may differ for other types of decisions!
- Preferential treatment in the weak sense
 - Results in greater utility than no preference, due to greater accuracy.
 - Defaults are bad for everyone.
- Preferential treatment in the strong sense
 - Possibility of error tends to reduce utility due to defaults.
 - However, greater opportunity for minorities may increase utility, due to reduced economic inequality in the community, and removal of barriers that tend to make minority individuals less qualified in the future.
- We don't consider options that violate other ethical principles (such as generalizability).

• Generalization principle applied to mortgage loans

- Analysis may differ for other types of decisions!
- Preferential treatment in the weak sense
 - There is arguably an **implied agreement** that the loan applicant divulges financial information on the understanding that it will serve as the basis for the loan decision.
 - Explicit consideration of minority status may violate this agreement.
 - Even if minority status is relevant to achieving accuracy in the aggregate, it is not clearly relevant to judging the financial responsibility of a **particular** majority applicant (or even a minority applicant).

• Generalization principle applied to mortgage loans

• Analysis may differ for other types of decisions!

• Preferential treatment in the strong sense

- Arguably a clearer violation of the implied agreement.
- It is granted from the outset that factors other than financial responsibility are considered.

• Generalization principle applied to mortgage loans

- Analysis may differ for other types of decisions!
- Preferential treatment in the strong sense
 - Arguably a clearer violation of the implied agreement.
 - It is granted from the outset that factors other than financial responsibility are considered.
- Ethical assessment depends on a determination of fact.
 - Can the applicant reasonably assume an agreement that financial responsibility will be the **only** factor in the loan decision?
 - Or just a **major** or **important** factor?

- Tentative conclusions
 - Preferential treatment in the weak sense
 - May be **generalizable**, depending on nature of the implied agreement.
 - Creates greater expected utility than no minority preference.
 - If generalizable, then ethically permissible and, in fact, obligatory, unless strong preferential treatment is generalizable and creates even greater expected utility.
 - Consistent with equalized odds, predictive rate parity, and counterfactual fairness.
 - May or may not be consistent with **demographic fairness**.

- Tentative conclusions
 - Preferential treatment in the strong sense
 - Can maximize utility.
 - If so, it is ethically permissible and, in fact, obligatory, unless it is not generalizable due to violation of implied agreement.
 - Normally inconsistent with equalized odds, predictive rate parity and counterfactual fairness.
 - May or may not be consistent with **demographic fairness**.

- More definitive guidance needed
 - Need to consider **utilitarian consequences** directly.
 - Need to **balance fairness and efficiency** in a principled way.
 - Need to solve the problem of *identifying protected groups*
- Classical deontology provides limited guidance
 - Contractualism (Rawls) maximizes minimum utility
 - Can yield extreme solutions wrt to fairness/efficiency trade-off
 - **Contractarianism** (Kalai-Smorodinsky, Gautier) maximizes equalized fraction of each stakeholder's maximum possible utility.
 - Seems suitable only for a bargaining context.

- One possibility: Use alpha fairness as a guide.
 - Allows adjustment of fairness/efficiency trade-off (α parameter).
 - Fairly wide use in practice, especially engineering.
 - Some axiomatic justification.
- What degree of group parity in implied by fairness for a given α?
 - Focus here on equalized odds (affirmative action).

- Reminder from previous tutorial
 - Alpha fairness for a given α is achieved by a utility distribution (u₁,...,u_n) that maximizes the social welfare function

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

subject to resource constraints.

- Utilitarian when $\alpha = 0$, maximin when $\alpha \to \infty$
- **Proportional fairness** (Nash bargaining solution) corresponds to $\alpha = 1$.

- Two models
 - Single policy model
 - **Does not consider membership** in a protected group.
 - Avoids issue of **which groups** to regard as protected.
 - Does alpha fairness for the population result in some degree of parity **across all groups**?
 - Dual policy model
 - **Considers membership** in a chosen protected group.
 - What degree of parity for this group is implied by a given choice of alpha?
 - What value of alpha results precisely in **equalized odds**?

Chen, JH, and Leben 2023

Notation for single-policy model

Probability parameters

P(Y) = Pr(a given individual is qualified to be selected) $P(Y|\widehat{Y}) = Pr(\text{qualified}|\text{predicted to be qualified})$

The selection decisions determine $P(D|\widehat{Y}) = Pr(\text{selected}|\text{predicted to be qualified})$ $P(D|\neg \widehat{Y}) = Pr(\text{selected}|\text{predicted to be unqualified})$

We require $P(D) = P(\widehat{Y})$

Notation for single-policy model

 $Utility \ parameters$

 $a_1 + b_1 =$ expected utility that results from selecting a qualified individual $b_1 =$ expected utility that results from rejecting a qualified individual $a_0 + b_0$, $b_0 =$ similarly for an unqualified individual

Utility definitions $\hat{a}_1 = a_1 P(Y|\widehat{Y}) + a_0 \left(1 - P(Y|\widehat{Y})\right)$ $\hat{b}_1 = b_1 P(Y|\widehat{Y}) + b_0 \left(1 - P(Y|\widehat{Y})\right)$ similarly for \hat{a}_0, \hat{b}_0

Results for single policy model

We first note that equalized odds is achieved for all groups when $P(D|\hat{Y}) = P(D|\neg \hat{Y})$, otherwise for none.

Alpha fairness for a given α is achieved when

$$P(D|\hat{Y}) = \frac{\left(\frac{\hat{a}_1}{\hat{a}_0}\right)^{1/\alpha} \left(\hat{a}_0 \frac{P(\hat{Y})}{1 - P(\hat{Y})} + \hat{b}_0\right) - \hat{b}_1}{\hat{a}_1 + \hat{a}_0 \left(\frac{\hat{a}_1}{\hat{a}_0}\right)^{1/\alpha} \frac{P(\hat{Y})}{1 - P(\hat{Y})}}$$
$$P(D|\neg \hat{Y}) = \frac{P(\hat{Y})}{1 - P(\hat{Y})} \left(1 - P(D|\hat{Y})\right)$$

Alpha fairness results in equalized odds across all groups when

$$\left(\frac{\hat{a}_1}{\hat{a}_0}\right)^{1/\alpha} = \frac{\hat{a}_1 P(\widehat{Y}) + \hat{b}_1}{\hat{a}_0 P(\widehat{Y}) + \hat{b}_0}$$

Proportional fairness ($\alpha = 1$) achieves equalized odds for all groups if $b_1 = b_0 = 0$ (start with zero baseline utility).

- Results for single policy model
 - While strict group parity requires ignoring qualifications, a **compromise** between accuracy and fairness is typically sought in practice.
 - A suitable choice of α gives some priority to accuracy while approximating equalized odds.

- Results for single policy model
 - Example.
 - College admissions, with 2 protected groups (low-income and female).

			High-income		
	P(Y)	$P(\widehat{Y})$	$P(Y \widehat{Y}), P(Y \neg \widehat{Y})$	a_1, b_1	a_0, b_0
Males	$\frac{1}{2}$	$\frac{1}{2}$	$rac{9}{10}, rac{1}{10}$	3,3	2,2
Females	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{5}{6}, \frac{1}{6}$	3,3	2,2
			Low-income		
	P(Y)	$P(\widehat{Y})$	$P(Y \widehat{Y}), P(Y \neg \widehat{Y})$	a_1, b_1	a_0, b_0
Males	$\frac{1}{4}$	$\frac{1}{6}$	$rac{2}{3},rac{1}{6}$	2, 2	3,1
Females	$\frac{1}{6}$	$\frac{1}{12}$	$rac{1}{2},rac{3}{22}$	2, 2	3, 1

- Results for single policy model
 - Example.
 - College admissions, with 2 protected groups (low-income and female).
 - Setting α = 0.349 achieves equalized odds of 0.292 for all minority groups.
 - So equalized odds corresponds to a **rather limited emphasis on fairness**, much less than in proportional fairness.
 - To compromise between fairness and efficiency:
 - Setting $\alpha = 0.25$ gives some priority to apparent qualifications (selection rate 0.382/0.254 for qualified/unqualified).
 - while yielding **similar odds ratios** of 0.354/0.330 for men/women and 0.354/0.312 for high/low income.

Notation for dual-policy model

Probability parameters

P(Y|Z) = Pr(a given minority individual is qualified to be selected) $P(Y|\neg Z) = Pr(a \text{ given majority individual is qualified to be selected})$ $P(Y|Z, \hat{Y}) = Pr(\text{qualified}|\text{minority }\& \text{ predicted to be qualified})$ $P(Y|\neg Z, \hat{Y}) = Pr(\text{qualified}|\text{majority }\& \text{ predicted to be qualified})$

The selection decisions determine $P(D|Z,\neg \widehat{Y})$ and $P(D|\neg Z, \widehat{Y})$

We assume $P(D|Z, \widehat{Y}) = 1$ and $P(D|\neg Z, \neg \widehat{Y})$. That is, all qualified minority individuals are selected, and no unqualified majority individuals are selected.

Notation for dual-policy model

Utility parameters

 a_1^M, b_1^M for qualified majority individuals a_0^m, b_0^m for unqualified minority individuals other utilities do not affect the solution

Utility definitions $\hat{a}_1^M, \hat{b}_1^M, \hat{a}_0^m, \hat{b}_0^m$ analogously

Results for dual policy model

Equalized odds can be achieved for a given minority group when $P(\hat{Y}|\neg Z) \geq P(\hat{Y}|Z)$

Alpha fairness for a given α is achieved when

$$P(D|\neg Z, \hat{Y}) = \frac{\left(\frac{\hat{a}_{1}^{M}}{\hat{a}_{0}^{m}}\right)^{1/\alpha} \left(\hat{a}_{0}^{m} \frac{(1 - P(Z))P(\hat{Y}|\neg Z)}{P(Z)(1 - P(\hat{Y}|Z))} + \hat{b}_{0}^{m}\right) - \hat{b}_{1}^{M}}{\hat{a}_{1}^{M} + \hat{a}_{0}^{m} \left(\frac{\hat{a}_{1}^{M}}{\hat{a}_{0}^{m}}\right)^{1/\alpha} \frac{(1 - P(Z))P(\hat{Y}|\neg Z)}{P(Z)(1 - P(\hat{Y}|Z))}}$$
$$P(D|Z, \neg \hat{Y}) = \frac{(1 - P(Z))P(\hat{Y}|\neg Z)}{P(Z)(1 - P(\hat{Y}|Z)} \left(1 - P(D|\neg Z, \hat{Y})\right)$$

Alpha fairness results in equalized odds across the two groups when

$$\left(\frac{\hat{a}_{1}^{M}}{\hat{a}_{0}^{m}}\right)^{1/\alpha} = \frac{\hat{a}_{1}^{M} + \hat{b}_{1}^{M} - \hat{a}_{1}^{M}P(Z)\left(1 - \frac{P(\hat{Y}|Z)}{P(\hat{Y}|\neg Z)}\right)}{(1 - P(Z))\frac{P(\hat{Y}|\neg Z) - P(\hat{Y}|Z)}{1 - P(\hat{Y}|Z)}\hat{a}_{0}^{m} + \hat{b}_{0}^{m}}$$
Social Welfare and Group Parity

- Results for **predictive rate parity**
 - Single policy model
 - Parity cannot be achieved for any value of α .
 - Dual policy model
 - One can correct for a smaller predictive rate in the minority group only by **making the minority group worse off.**
 - *i.e., by reducing the selection probability for minority individuals.*
 - Conclusion: Predictive rate parity in unsuitable as a bias metric.
 - ...based on fairness concepts implicit in alpha fairness.

- Example: Self-driving cars.
 - Is it ethical to manufacture self-driving cars that will be used on public streets and roads?

- Example: Self-driving cars.
 - Is it ethical to manufacture self-driving cars that will be used on public streets and roads?
 - Utilitarian principle
 - This test is passed if one can rationally believe that self-driving cars are at least as safe **on the average**.

- Example: Self-driving cars.
 - Autonomy principle
 - The manufacturer is **rationally constrained to believe** that some people will be killed or seriously injured by the cars.
 - Question: is there **informed consent**?
 - Probably from **passengers**, who presumably know the car is self-driving.

- Example: Self-driving cars.
 - Autonomy principle
 - The manufacturer is **rationally constrained to believe** that some people will be killed or seriously injured by the cars.
 - Question: is there informed consent?
 - Probably from **passengers**, who presumably know the car is self-driving.
 - From **pedestrians**?
 - They may be unaware that a self-driving car is nearby.
 So how can they give informed consent to the risk it poses?

- Example: Self-driving cars.
 - Autonomy principle
 - The manufacturer is **rationally constrained to believe** that some people will be killed or seriously injured by the cars.
 - Question: is there informed consent?
 - Probably from **passengers**, who presumably know the car is self-driving.
 - From **pedestrians**?
 - They may be unaware that a **self-driving car** is nearby. So how can they give informed consent to the risk it poses?
 - Perhaps its is enough to give consist to the **level** of risk posed by self-driving cars.
 - If this level is **no greater** than that of ordinary cars (already required by the utilitarian principle), we are OK.

Value alignment

- How does one **teach** ethical values to a machine?
 - Crowd sourced values are unsatisfactory and risk committing the naturalistic fallacy (e.g., MIT's "Moral Machine").
 - One approach: **rule-based AI** (i.e., "good old-fashioned AI").
 - If-then instructions can be regarded as action plans.
 - The action plans in a rule base can be ethically assessed by specializing the ethical principles to each one, to generate **test propositions**.
 - The truth of the test propositions is an **empirical** question.
 - **ML with neural networks** can assess their truth.

Kim, JH, and Donaldson 2021

Value alignment

- Example: Logical formulation of generalization principle
 - Consider the action plan ٠

Agent a's reasons

Agent *a* regards *C(a)* as justifying *A(a)* $C(a) \Rightarrow_a A(a)$ Agent *a* takes action *A*

The generalization principle is

Possibility predicate For all agents *x* Modal operator (rational belief) $\rightarrow \Diamond_a P \Big(\forall x \Big(C(x) \rightarrow A(x) \Big) \land C(a) \land A(a) \Big)$

> Agent a can rationally believe that it is possible to take action A when reasons C apply, and when all agents to whom reasons C apply take action A.

Value alignment

• Example: Logical formulation of generalization principle

Ambulance example

 $C_1(a) =$ An ambulance under the control of agent a can reach its destination sooner by using the siren $C_2(a) =$ There is an emergency patient in the ambulance. A(a) = The ambulance will use the siren.

Consider the action plan: $C_1(a) \Rightarrow_a A(a)$

The generalization principle is

$$\Diamond_a P\Big(\forall x \big(C(x) \to A(x)\big) \land C(a) \land A(a)\Big)$$

This generates the test proposition

$$\Diamond_a P\Big(\forall x \big(C_1(x) \to A(x)\big) \land C_1(a) \land A(a)\Big)$$

This is empirically **false**, since the agent cannot rationally believe that such general use of sirens would permit an ambulance to arrive sooner with a siren. **Violation.** Remove from rule base.

Value alignment

• Example: Logical formulation of generalization principle

Ambulance example

 $C_1(a) =$ An ambulance under the control of agent a can reach its destination sooner by using the siren

 $C_2(a) =$ There is an emergency patient in the ambulance.

A(a) = The ambulance will use the siren.

Consider the action plan $(C_1(a) \land C_2(a)) \Rightarrow_a A(a)$

The generalization principle is

$$\Diamond_a P\Big(\forall x \big(C(x) \to A(x) \big) \land C(a) \land A(a) \Big)$$

This generates the test proposition

$$\Diamond_a P\Big(\forall x\big((C_1(x) \land C_2(x)) \to A(x)\big) \land C_1(a) \land C_2(a) \land A(a)\Big)$$

This is empirically **true**, since evidence shows that ambulances can arrive sooner with a siren when it is always used for emergency transport. **No violation.** Keep in rule base.

- Value alignment
 - Ultimately, one can build truly autonomous machines.
 - Autonomous agents are **necessarily ethical**.
 - They can provide a coherent (and therefore ethical) rationale for all action plans.
 - In particular, **they won't take over** and enslave humans, because this violates the autonomy principle.

Questions? Comments?

