Equity and Efficiency in the Allocation of Health Care Resources

John Hooker
Carnegie Mellon University

H. P. Williams
London School of Economics

INFORMS Healthcare Conference 2015
Nashville, USA
Equity and Efficiency

• The problem is to find a fair and reasonable distribution of resources.

• Motivation:
 • Very expensive treatments increasingly available.
 • Limited resources.
Equity and Efficiency

• The dilemma:

 • Allocate enormous resources to a few, seriously ill individuals (e.g. proton beam therapy),

 OR

 • Obtain better overall results by treating a broader population (e.g. flu shots).
Equity and Efficiency

The dilemma arises in:
- Treatment
- Medical research
- Clinical trials
- Organ transplant
Equity and Efficiency

- Two classical criteria for allocating resources:
 - **Utilitarianism** (efficiency)
 - **Difference principle of John Rawls** (equity)
Equity and Efficiency

- **Utilitarianism** allocates resources to maximize total net utility.
 - Greatest good for the greatest number.
 - May sacrifice expensive treatments for seriously ill.
Equity and Efficiency

• The Rawlsian difference principle seeks to maximize the welfare of the least advantaged.
 • Social contract argument.
 • May result in less overall benefit.
Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 – How to combine them?
Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme in practice.
 – How to combine them?

• One proposal:
 – Maximize welfare of most seriously ill (Rawlsian)...
 – …until this requires undue sacrifice from others
Combining Equity and Efficiency

• In particular:

 – Switch from **Rawlsian** to **utilitarian** when **inequality** exceeds Δ.
Combining Equity and Efficiency

• In particular:

 – Switch from **Rawlsian** to **utilitarian** when **inequality** exceeds Δ.

 – Build mixed integer programming model.
 – Let $u_i =$ utility allocated to person i

• For 2 persons:

 – Maximize $\min\{u_1, u_2\}$ (Rawlsian) when $|u_1 - u_2| \leq \Delta$
 – Maximize $u_1 + u_2$ (utilitarian) when $|u_1 - u_2| > \Delta$
Two-person Model

Contours of social welfare function for 2 persons.
Two-person Model

Contours of social welfare function for 2 persons.

Rawlsian region $\min\{u_1, u_2\}$
Two-person Model

Contours of **social welfare function** for 2 persons.

Utilitarian region
\[u_1 + u_2 \]

Rawlsian region
\[\min \{ u_1, u_2 \} \]
Person 1 is harder to treat.

But maximizing person 1’s health requires too much sacrifice from person 2.
Advantages

• Only one parameter Δ
 – Δ has intuitive meaning (unlike weights in multicriteria models)
 – Examine consequences of different settings for Δ
 – Find least objectionable setting
 – Results in a consistent policy
We want continuous contours…
Social Welfare Function

We want continuous contours…

\[u_1 + u_2 \]

\[2\min\{u_1, u_2\} + \Delta \]

So we use affine transform of Rawlsian criterion
Social Welfare Function

The social welfare problem becomes

\[
\begin{align*}
\text{max } z & \\
\text{subject to } & \\
z \leq \begin{cases}
2\min\{u_1, u_2\} + \Delta, & \text{if } |u_1 - u_2| \leq \Delta \\
u_1 + u_2, & \text{otherwise}
\end{cases}
\end{align*}
\]

constraints on feasible set
MILP Model

Epigraph is union of 2 polyhedra.
MILP Model

Epigraph is union of 2 polyhedra. Because they have different recession cones, there is no MILP model.
MILP Model

Impose constraints $|u_1 - u_2| \leq M$
MILP Model

This equalizes recession cones.

Recession directions \((u_1, u_2, z)\)
MILP Model

We have the model...

\[
\begin{align*}
\text{max} & \quad z \\
 z & \leq 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1,2 \\
 z & \leq u_1 + u_2 + \Delta(1 - \delta) \\
u_1 - u_2 & \leq M, \quad u_2 - u_1 \leq M \\
u_1, u_2 & \geq 0 \\
\delta & \in \{0,1\}
\end{align*}
\]

constraints on feasible set
MILP Model

We have the model...

\[
\begin{align*}
\text{max } & \quad z \\
\text{s.t. } & \quad z \leq 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1,2 \\
& \quad z \leq u_1 + u_2 + \Delta(1 - \delta) \\
& \quad u_1 - u_2 \leq M, \quad u_2 - u_1 \leq M \\
& \quad u_1, u_2 \geq 0 \\
& \quad \delta \in \{0, 1\}
\end{align*}
\]

This is a convex hull formulation.
Rewrite the 2-person social welfare function as…

\[\Delta + 2u_{\min} + \left(u_1 - u_{\min} - \Delta \right)^+ + \left(u_2 - u_{\min} - \Delta \right)^+ \]

\[\min \{ u_1, u_2 \} \]

\[\alpha^+ = \max \{ 0, \alpha \} \]

\[u_1 \]
Rewrite the 2-person social welfare function as…

\[\Delta + 2u_{\text{min}} + (u_1 - u_{\text{min}} - \Delta)^+ + (u_2 - u_{\text{min}} - \Delta)^+ \]

\[\min \{u_1, u_2\} \]

This can be generalized to \(n \) persons:

\[(n - 1)\Delta + nu_{\text{min}} + \sum_{j=1}^{n} (u_j - u_{\text{min}} - \Delta)^+ \]

\[\alpha^+ = \max \{0, \alpha\} \]
Rewrite the 2-person social welfare function as...

\[
\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+
\]

\[
\min\{u_1, u_2\}
\]

This can be generalized to \(n\) persons:

\[
(n - 1)\Delta + nu_{\min} + \sum_{j=1}^{n}(u_j - u_{\min} - \Delta)^+
\]

\[
u_1
\]

Interpretation: Everyone with utility within \(\Delta\) of worst-off person is counted as having same utility as the worst-off person.
\textbf{\textit{n}-person MILP Model}

To avoid $n!$ 0-1 variables, add auxiliary variables w, v_i

\begin{align*}
\text{max } & \quad z \\
\text{s.t. } & \quad z \leq (n - 1)\Delta + \sum_i v_i \\
& \quad u_i - \Delta \leq v_i \leq u_i - \Delta \delta_i, \text{ all } i \\
& \quad w \leq v_i \leq w + (M - \Delta) \delta_i, \text{ all } i \\
& \quad u_i \geq 0, \text{ all } i \\
& \quad \delta_i \in \{0,1\}, \text{ all } i
\end{align*}
n-person MILP Model

To avoid $n!$ 0-1 variables, add auxiliary variables w, v_i

\[
\begin{align*}
\text{max } & \quad z \\
\text{s.t. } & \quad z \leq (n - 1)\Delta + \sum_i v_i \\
& \quad u_i - \Delta \leq v_i \leq u_i - \Delta \delta_i, \quad \text{all } i \\
& \quad w \leq v_i \leq w + (M - \Delta)\delta_i, \quad \text{all } i \\
& \quad u_i \geq 0, \quad \text{all } i \\
& \quad \delta_i \in \{0,1\}, \quad \text{all } i
\end{align*}
\]

Theorem. The model is correct (not easy to prove).
n-person MILP Model

To avoid $n!$ 0-1 variables, add auxiliary variables w, v_i

$$\text{max } z$$
$$z \leq (n - 1)\Delta + \sum_i v_i$$
$$u_i - \Delta \leq v_i \leq u_i - \Delta \delta_i, \text{ all } i$$
$$w \leq v_i \leq w + (M - \Delta)\delta_i, \text{ all } i$$
$$u_i \geq 0, \text{ all } i$$
$$\delta_i \in \{0,1\}, \text{ all } i$$

Theorem. The model is correct (not easy to prove).

Theorem. This is a convex hull formulation (not easy to prove).
n-group Model

In practice, funds may be allocated to groups of different sizes

For example, disease/treatment categories.

Let \bar{u}_i = average utility gained by a person in group i

n_i = size of group i
n-group Model

2-person case with $n_1 < n_2$. Contours have slope $-n_1/n_2$
n-group MILP Model

Again add auxiliary variables \(w, v_i \)

\[
\text{max } z \\
z \leq \left(\sum_i n_i - 1 \right) \Delta + \sum_i n_i v_i \\
u_i - \Delta \leq v_i \leq u_i - \Delta \delta_i, \text{ all } i \\
w \leq v_i \leq w + (M - \Delta) \delta_i, \text{ all } i \\
u_i \geq 0, \text{ all } i \\
\delta_i \in \{0, 1\}, \text{ all } i \\
\]

Theorem. The model is correct.

Theorem. This is a convex hull formulation.
Health Care Allocation

Measure utility in **QALYs** (quality-adjusted life years).

QALY, cost data, and group sizes based on Briggs & Gray (2000) and other sources.

Each group is a disease/treatment pair.

QALYs gained is a **concave, nonlinear** function of investment (decreasing marginal payoff)

\[u_1 \]
Health Example

Add constraints to define feasible set...

\[
\begin{align*}
\text{max } & \quad z \\
& \quad z \leq \left(\sum_{i} n_i - 1 \right) \Delta + \sum_{i} n_i v_i \\
\bar{u}_i - \Delta & \leq v_i \leq \bar{u}_i - \Delta \delta_i, \quad \text{all } i \\
w & \leq v_i \leq w + (M - \Delta) \delta_i, \quad \text{all } i \\
\bar{u}_i & \geq 0, \quad \text{all } i \\
\delta_i & \in \{0, 1\}, \quad \text{all } i \\
\bar{u}_i = & \frac{q_i(x_i)}{n_i} + \alpha_i, \quad \text{all } i \\
\sum_i x_i & \leq \text{budget}
\end{align*}
\]

\(q_i(x_i)\) is total additional QALYs in group \(i\) resulting from expenditure of \(x_i\)
QALY & Cost Data

Part 1

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Cost per person c_i (£)</th>
<th>QALYs gained q_i</th>
<th>Cost per QALY α_i (£)</th>
<th>QALYs without intervention α_i</th>
<th>Subgroup size n_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacemaker for atrioventricular heart block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup A</td>
<td>3500</td>
<td>3</td>
<td>1167</td>
<td>13</td>
<td>35</td>
</tr>
<tr>
<td>Subgroup B</td>
<td>3500</td>
<td>5</td>
<td>700</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Subgroup C</td>
<td>3500</td>
<td>10</td>
<td>350</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Hip replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup A</td>
<td>3000</td>
<td>2</td>
<td>1500</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>Subgroup B</td>
<td>3000</td>
<td>4</td>
<td>750</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>Subgroup C</td>
<td>3000</td>
<td>8</td>
<td>375</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Valve replacement for aortic stenosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup A</td>
<td>4500</td>
<td>3</td>
<td>1500</td>
<td>2.5</td>
<td>20</td>
</tr>
<tr>
<td>Subgroup B</td>
<td>4500</td>
<td>5</td>
<td>900</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Subgroup C</td>
<td>4500</td>
<td>10</td>
<td>450</td>
<td>3.5</td>
<td>20</td>
</tr>
<tr>
<td>CABG(^1) for left main disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild angina</td>
<td>3000</td>
<td>1.25</td>
<td>2400</td>
<td>4.75</td>
<td>50</td>
</tr>
<tr>
<td>Moderate angina</td>
<td>3000</td>
<td>2.25</td>
<td>1333</td>
<td>3.75</td>
<td>55</td>
</tr>
<tr>
<td>Severe angina</td>
<td>3000</td>
<td>2.75</td>
<td>1091</td>
<td>3.25</td>
<td>60</td>
</tr>
<tr>
<td>CABG for triple vessel disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild angina</td>
<td>3000</td>
<td>0.5</td>
<td>6000</td>
<td>5.5</td>
<td>50</td>
</tr>
<tr>
<td>Moderate angina</td>
<td>3000</td>
<td>1.25</td>
<td>2400</td>
<td>4.75</td>
<td>55</td>
</tr>
<tr>
<td>Severe angina</td>
<td>3000</td>
<td>2.25</td>
<td>1333</td>
<td>3.75</td>
<td>60</td>
</tr>
<tr>
<td>CABG for double vessel disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild angina</td>
<td>3000</td>
<td>0.25</td>
<td>12,000</td>
<td>5.75</td>
<td>60</td>
</tr>
<tr>
<td>Moderate angina</td>
<td>3000</td>
<td>0.75</td>
<td>4000</td>
<td>5.25</td>
<td>65</td>
</tr>
<tr>
<td>Severe angina</td>
<td>3000</td>
<td>1.25</td>
<td>2400</td>
<td>4.75</td>
<td>70</td>
</tr>
</tbody>
</table>
QALY & cost data

Part 2

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Cost per person (c_i) (£)</th>
<th>QALYs gained (q_i)</th>
<th>Cost per QALY (£)</th>
<th>QALYs without intervention (\alpha_i)</th>
<th>Subgroup size (n_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart transplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney transplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup A</td>
<td>15,000</td>
<td>4</td>
<td>3750</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Subgroup B</td>
<td>15,000</td>
<td>6</td>
<td>2500</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Kidney dialysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 1 year survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup A</td>
<td>5000</td>
<td>0.1</td>
<td>50,000</td>
<td>0.3</td>
<td>24</td>
</tr>
<tr>
<td>1-2 years survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup B</td>
<td>12,000</td>
<td>0.4</td>
<td>30,000</td>
<td>0.6</td>
<td>18</td>
</tr>
<tr>
<td>2-5 years survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup C</td>
<td>20,000</td>
<td>1.2</td>
<td>16,667</td>
<td>0.5</td>
<td>12</td>
</tr>
<tr>
<td>Subgroup D</td>
<td>28,000</td>
<td>1.7</td>
<td>16,471</td>
<td>0.7</td>
<td>12</td>
</tr>
<tr>
<td>Subgroup E</td>
<td>36,000</td>
<td>2.3</td>
<td>15,652</td>
<td>0.8</td>
<td>12</td>
</tr>
<tr>
<td>5-10 years survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup F</td>
<td>46,000</td>
<td>3.3</td>
<td>13,939</td>
<td>0.6</td>
<td>9</td>
</tr>
<tr>
<td>Subgroup G</td>
<td>56,000</td>
<td>3.9</td>
<td>14,359</td>
<td>0.8</td>
<td>6</td>
</tr>
<tr>
<td>Subgroup H</td>
<td>66,000</td>
<td>4.7</td>
<td>14,043</td>
<td>0.9</td>
<td>6</td>
</tr>
<tr>
<td>Subgroup I</td>
<td>77,000</td>
<td>5.4</td>
<td>14,259</td>
<td>1.1</td>
<td>6</td>
</tr>
<tr>
<td>At least 10 years survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup J</td>
<td>88,000</td>
<td>6.5</td>
<td>13,538</td>
<td>0.9</td>
<td>6</td>
</tr>
<tr>
<td>Subgroup K</td>
<td>100,000</td>
<td>7.4</td>
<td>13,514</td>
<td>1.0</td>
<td>3</td>
</tr>
<tr>
<td>Subgroup L</td>
<td>111,000</td>
<td>8.2</td>
<td>13,537</td>
<td>1.2</td>
<td>3</td>
</tr>
</tbody>
</table>
Results

Number treated by category
Total budget £3 million

<table>
<thead>
<tr>
<th>Δ =</th>
<th>0–2.3</th>
<th>2.4–3.9</th>
<th>4.0–5.4</th>
<th>5.5–11.2</th>
<th>11.3–∞</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacemaker</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>109</td>
<td>2</td>
<td>115</td>
</tr>
<tr>
<td>Hip replace</td>
<td>135</td>
<td>135</td>
<td>134</td>
<td>0</td>
<td>0</td>
<td>135</td>
</tr>
<tr>
<td>Aortic valve</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>CABG</td>
<td>4</td>
<td>360</td>
<td>463</td>
<td>0</td>
<td>0</td>
<td>540</td>
</tr>
<tr>
<td>Heart trans.</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Kidney trans.</td>
<td>56</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>17</td>
<td>80</td>
</tr>
<tr>
<td>Dialysis</td>
<td>0</td>
<td>5</td>
<td>23</td>
<td>31</td>
<td>40</td>
<td>117</td>
</tr>
</tbody>
</table>
Results

Number treated by category
Total budget £4 million

<table>
<thead>
<tr>
<th>Δ =</th>
<th>0–2.3</th>
<th>2.4–3.9</th>
<th>4.0–5.4</th>
<th>5.5–11.2</th>
<th>11.3–∞</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacemaker</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>113</td>
<td>115</td>
</tr>
<tr>
<td>Hip replace</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>1</td>
<td>135</td>
</tr>
<tr>
<td>Aortic valve</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>CABG</td>
<td>424</td>
<td>500</td>
<td>475</td>
<td>3</td>
<td>0</td>
<td>540</td>
</tr>
<tr>
<td>Heart trans.</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Kidney trans.</td>
<td>80</td>
<td>80</td>
<td>7</td>
<td>17</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>Dialysis</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>33</td>
<td>49</td>
<td>117</td>
</tr>
</tbody>
</table>
Δ = 0

- Pacemaker
- Hip replace
- Aortic valve
- CABG
- Heart trans.
- Kidney trans.
- Dialysis

Budget = £3 million

Avg. QALYs per person

<table>
<thead>
<tr>
<th></th>
<th>2.4</th>
<th>4.0</th>
<th>5.5</th>
<th>11.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacemaker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip replace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart trans.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney trans.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Avg. QALYs per person:

- Pacemaker: 6.87
- Hip replace: 6.05
- Aortic valve: 5.18
- CABG: 6.24
- Heart trans.: 2.4
- Kidney trans.: 3.4
- Dialysis: 5.0

Budget = £4 million

Avg. QALYs per person: 6.58
Results

Average QALYs per person

Total budget £3 million

<table>
<thead>
<tr>
<th></th>
<th>$\Delta = 0-2.3$</th>
<th>$2.4-3.9$</th>
<th>$4.0-5.4$</th>
<th>$5.5-11.2$</th>
<th>$11.3-\infty$</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacemaker</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>9.6</td>
<td>15.3</td>
</tr>
<tr>
<td>Hip replace</td>
<td>8.7</td>
<td>8.7</td>
<td>8.6</td>
<td>4.0</td>
<td>4.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Aortic valve</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>3.0</td>
<td>9.0</td>
</tr>
<tr>
<td>CABG</td>
<td>5.8</td>
<td>5.9</td>
<td>4.6</td>
<td>4.6</td>
<td>4.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Heart trans.</td>
<td>1.1</td>
<td>1.1</td>
<td>1.8</td>
<td>2.2</td>
<td>2.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Kidney trans.</td>
<td>4.8</td>
<td>1.0</td>
<td>1.8</td>
<td>2.1</td>
<td>2.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Dialysis</td>
<td>0.7</td>
<td>1.0</td>
<td>1.7</td>
<td>2.1</td>
<td>2.3</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Results

Average QALYs per person
Total budget £4 million

<table>
<thead>
<tr>
<th>Δ =</th>
<th>0–2.3</th>
<th>2.4–3.3</th>
<th>3.4</th>
<th>3.5–4.9</th>
<th>5.0–∞</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacemaker</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.2</td>
<td>15.3</td>
</tr>
<tr>
<td>Hip replace</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>4.1</td>
<td>8.7</td>
</tr>
<tr>
<td>Aortic valve</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
</tr>
<tr>
<td>CABG</td>
<td>5.9</td>
<td>6.0</td>
<td>6.0</td>
<td>4.6</td>
<td>4.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Heart trans.</td>
<td>5.6</td>
<td>1.1</td>
<td>1.6</td>
<td>2.2</td>
<td>2.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Kidney trans.</td>
<td>6.0</td>
<td>6.0</td>
<td>1.5</td>
<td>2.3</td>
<td>2.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Dialysis</td>
<td>0.7</td>
<td>0.8</td>
<td>1.5</td>
<td>2.2</td>
<td>2.6</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Solution time vs. Δ

![Graph showing solution time vs. delta for different number of groups.](graph.png)