Equity through Social Welfare Optimization

John Hooker

Carnegie Mellon University

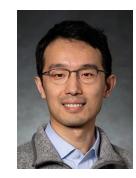
UCLA Instutute for Pure and Applied Mathematics January 2024

Some results represent joint work with...

Violet (Xinying) Chen Stevens Institute of Technology

Özgün Elçi *Amazon*

H. Paul Williams London School of Economics



Peter Zhang CMU

- A growing interest in incorporating **fairness** into models
 - Health care resources.
 - Facility location (e.g., emergency services, infrastructure).
 - Telecommunications.
 - Traffic signal timing
 - Disaster recovery (e.g., power restoration)

- Example: Emergency facility location
 - Locations in densely populated zone minimize average response time, but are unfair to those in outlying areas
 - Locations that minimize worst-case response time result in poor service for most of the population
- A more equitable solution
 - ...would compromise between equity and efficiency.

- Example: Traffic signal timing
 - Throughput is maximized by giving constant green light to the major street, red light to cross street.
 - Then motorists on the cross street wait forever.
- A more equitable solution would find a compromise.
 - For example, by using proportional fairness (Nash Bargaining solution), a special case of alpha fairness.

- Similar example: Telecommunications
 - Must compromise between maximizing total throughput and minimizing worst-case latency
- An early adopter of fairness modeling.
 - Alpha fairness, Jain's index, QoE fairness, G's fairness index, Bossaert's fairness index
 - All but alpha fairness are pure inequality measures.

Example: Disaster relief

- Power restoration can focus on urban areas first (efficiency).
- This can leave rural areas without power for weeks/months.
- This happened in Puerto Rico after Hurricane Maria (2017).

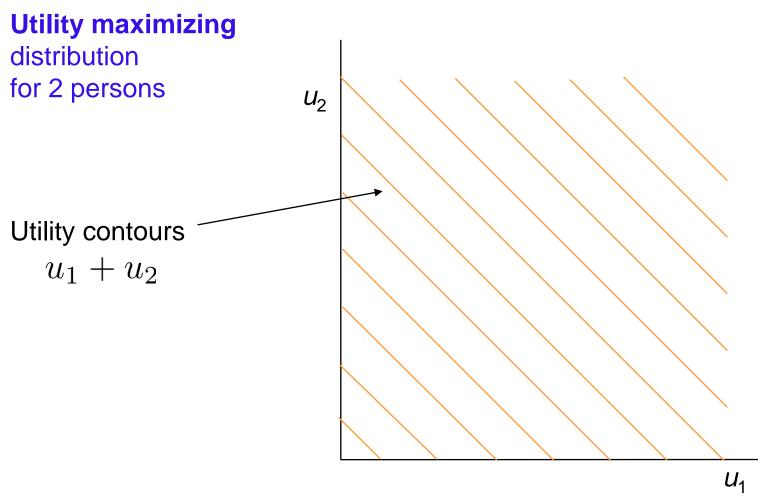
A more equitable solution

 ...would give some priority to rural areas without overly sacrificing efficiency.

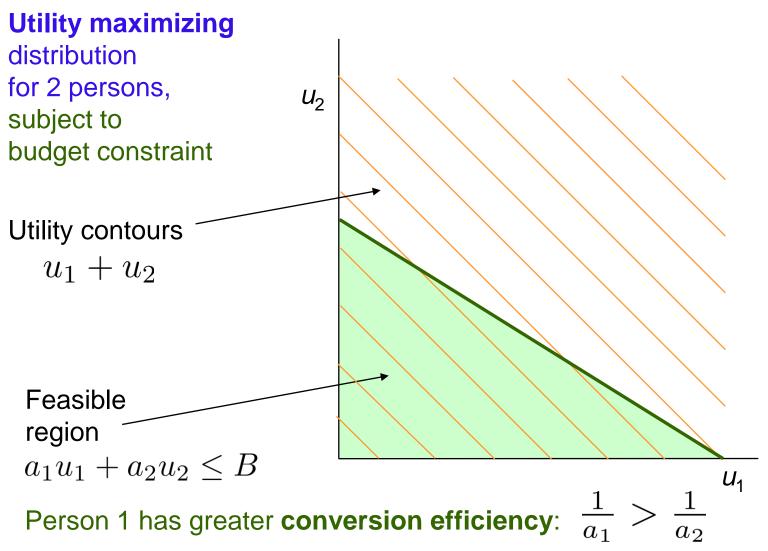
- Optimization models are normally formulated to **maximize utility**.
 - where utility = wealth, health, negative cost, etc.
 - This can lead to **very unfair** resource distribution.

• For example...

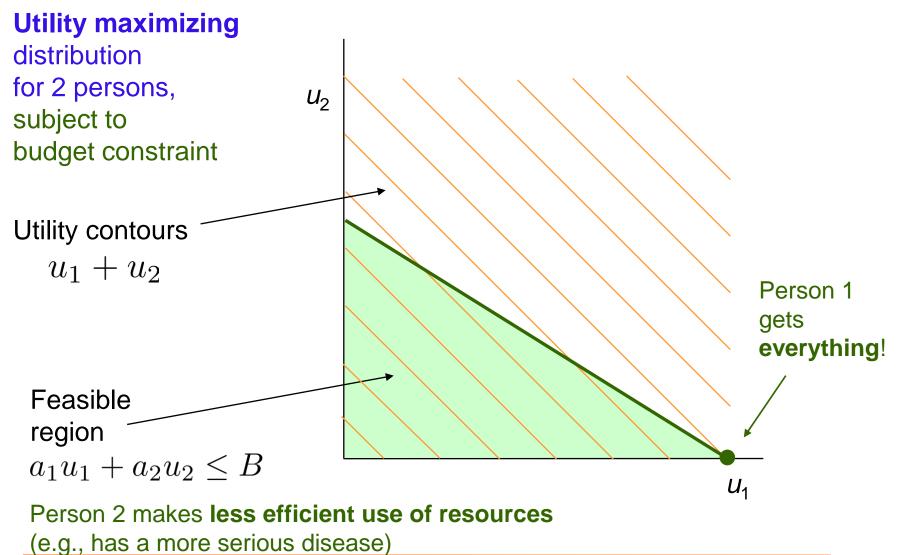
Maximize Utility?



Maximize Utility?



Maximize Utility?



- There is **no one** concept of fairness.
 - The appropriate concept **depends on the context**.
- How to choose the right one?
- For each of several fairness models, we...
 - Describe the **optimal solutions** they deliver
 - Determine their implications for **hierarchical** distribution
 - Study how they incentivize efficiency improvements and competition vs. cooperation.
- We also take a brief excursion into social choice theory.

- We focus on fairness models that **balance equity and efficiency** in some principled way.
 - Why not use an **inequality bound?**
 - This provides no guidance for the equity-efficiency trade-off.
 - Why not use a **convex combination**?
 - It is unclear how to interpret the **multipliers** assigned to equity and efficiency (which are typically expressed in incommensurable units).

Generic Model

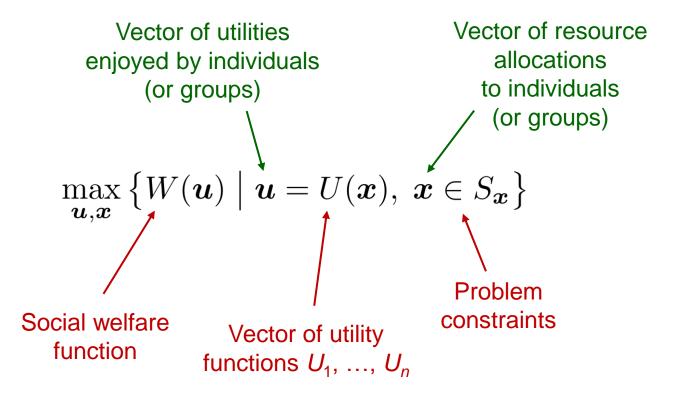
• We formulate each fairness criterion as a **social welfare** function (SWF). Individual utilities

$$W(\boldsymbol{u}) = W(u_1, \ldots, u_n)$$

- Measures desirability of the magnitude and distribution of utilities across individuals.
- The SWF becomes the objective function of the optimization model.

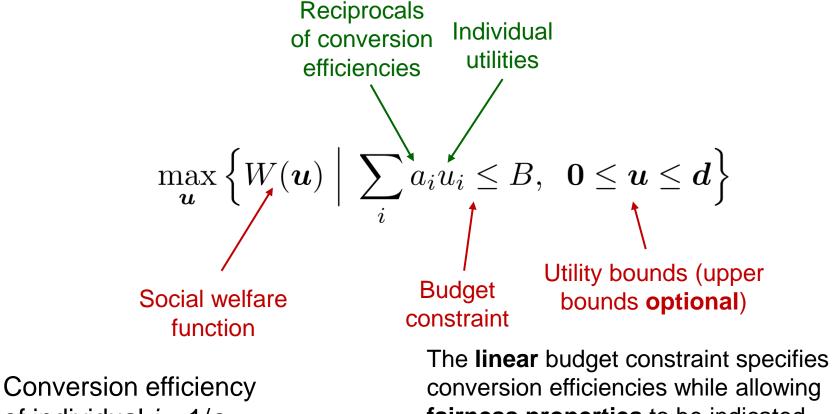
Generic Model

The social welfare optimization problem



Generic Model

We state structural results for a linearly constrained model



of individual $i = 1/a_i$

conversion efficiencies while allowing fairness properties to be indicated transparently in the SWF.

References

• References and more details may be found in

V. Chen & J.N. Hooker, <u>A guide to formulating equity and</u> fairness in an optimization model, *Annals of OR*, 2023.

Ö. Elçi, J.N. Hooker & P. Zhang, Structural properties of fair solutions, submitted 2023.

Fairness for the disadvantaged

Criterion	Linear?	Contin?
Maximin (Rawlsian)	yes	yes
Leximax (lexicographic)	yes	yes

Combining efficiency & fairness Classical methods

Criterion	Linear?	Contin?
Alpha fairness	yes	yes
Proportional fairness (Nash bargaining)	yes	yes
Kalai-Smorodinsky bargaining	no	yes

Linear = fairness model introduces only **linear** expressions *Contin.* = fairness model introduces only **continuous** variables

Combining efficiency & fairness Threshold methods

Criterion	Linear?	Contin?
Utility + maximin – Utility threshold	yes	no
Utility + maximin – Equity threshold	yes	yes
Utility + leximax – Predefined priorities	yes	no
Utility + leximax – No predefined priorities	yes	no

Linear = fairness model introduces only **linear** expressions *Contin.* = fairness model introduces only **continuous** variables

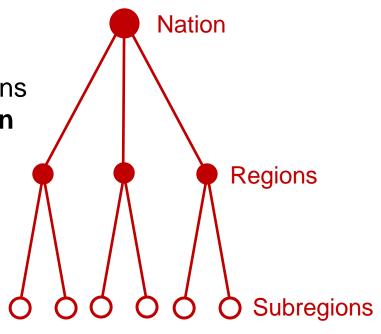
Hierarchical Distribution

Two-level hierarchy

- National authority allocates resources to regions.
- Each region combines these resources with its own resources and allocates to subregions.

Regional decomposability

- Each region's allocation to subregions is the same as in a national solution that uses the same SWF.
- Surprisingly, some SWFs are **not** regionally decomposable.



Hierarchical Distribution

Sufficient condition for regional decomposability

SWF $W(\boldsymbol{u})$ is monotonically separable when for any partition $\boldsymbol{u} = (\boldsymbol{u}^1, \boldsymbol{u}^2), W(\bar{\boldsymbol{u}}^1) \geq W(\boldsymbol{u}^1)$ and $W(\bar{\boldsymbol{u}}^2) \geq W(\boldsymbol{u}^2)$ imply $W(\bar{\boldsymbol{u}}) \geq W(\boldsymbol{u})$.

In particular, a separable SWF is monotonically separable.

Theorem.

A monotonically separable SWF is regionally decomposable.

Incentives and Sharing

My incentive rate =

% increase in my optimal utility allotment % increase in my conversion efficiency

A **positive** incentive rate indicates a reward for **improving** efficiency.

My **cross-subsidy rate** with respect to another individual =

% increase in the other individual's optimal utility allotment % increase in my conversion efficiency

Positive cross-subsidy rates indicate **cooperation**. **Negative** cross-subsidy rates indicate **competition**.

Utilitarian SWF

Maximize total utility:

$$W(\boldsymbol{u}) = \sum_{i} u_{i}$$

Optimal solution subject to budget constraint:

• Most efficient person gets everything.

Regionally decomposable?

• Separable SWF \rightarrow yes.

Incentive rate?

• 1 for most efficient person, 0 for others.

Cross-subsidy rates?

• All zero

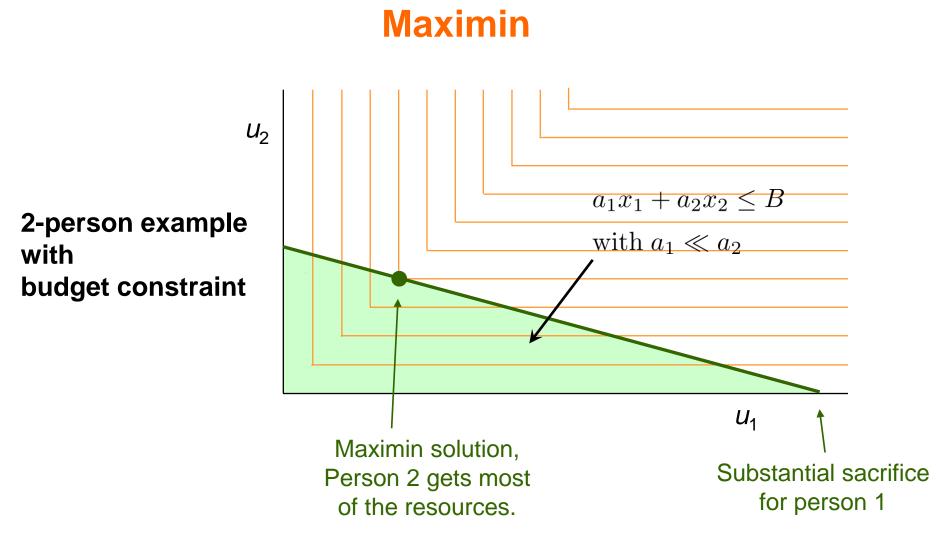
Maximin

Maximize minimum utility: $W(\boldsymbol{u}) = \min_{i} \{u_i\}$

Suggested by social contract argument for **Difference Principle** of John Rawls, which applies only to design of social institutions and distribution of "primary goods."

Optimal solution subject to budget constraint:

• Everyone gets equal utility.



In a medical context, patient 1 is reduced to same level of suffering as seriously ill patient 2.

Maximin

Maximize minimum utility: $W(\boldsymbol{u}) = \min_{i} \{u_i\}$

Suggested by social contract argument for **Difference Principle** of John Rawls, which applies only to design of social institutions and distribution of "primary goods."

Optimal solution subject to budget constraint:

• Everyone gets equal utility.

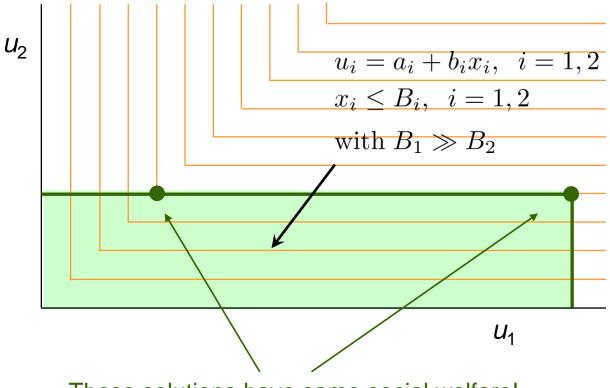
Optimal solution subject to resource bounds:

• Can waste most of the available resources.

Fairness for the Disadvantaged

Maximin

Example with resource bounds



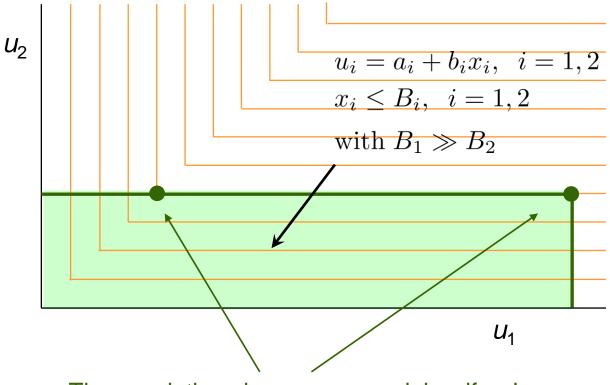
These solutions have same social welfare!

Fairness for the Disadvantaged

Maximin

Example with resource bounds

Remedy: use **leximax** solution



These solutions have same social welfare!

Maximin

Maximize minimum utility: $W(\boldsymbol{u}) = \min_{i} \{u_i\}$

Regionally decomposable

• Monotonically separable SWF

Positive incentive rate for person $i = \frac{a_i}{\sum_j a_j}$

• Less efficient parties have greater incentive to improve.

Positive cross-subsidy to all others: $\frac{a_i}{\sum_j a_j}$

• Everyone benefits equally from person *i*'s improvement.

Leximax

Maximize smallest utility, then 2nd smallest, etc.

Optimal solution subject to budget constraint:

• Everyone gets **equal** utility.

Optimal solution subject to budget constraint and bounds:

• No waste of resources.

Regionally decomposable

• using generalized definition of decomposability

- The economics literature derives social welfare functions from **axioms of rational choice**.
- The social welfare function depends on degree of **interpersonal comparability** of utilities.
- Arrow's impossibility theorem was the first result, but there are many others.

Axioms

Anonymity (symmetry)

Social preferences are the same if indices of u_i s are permuted.

Strict pareto

If u > u', then u is preferred to u'.

Independence

The preference of u over u' depends only on u and u' and not on what other utility vectors are possible.

Separability

Individuals *i* for which $u_i = u'_i$ do not affect the relative ranking of \boldsymbol{u} and $\boldsymbol{u'}$.

Interpersonal comparability

 The properties of social welfare functions that satisfy the axioms depend on the degree to which utilities can be **compared** across individuals.

Invariance transformations

- These are transformations of utility vectors that indicate the degree of interpersonal comparability.
- Applying an invariance transformation to utility vectors does not change the **ranking** of distributions.

An invariance transformation has the form $\boldsymbol{\phi} = (\phi_1, \dots, \phi_n)$, where ϕ_i is a transformation of individual utility *i*.

Unit comparability.

- Invariance transformation has the form $\phi_i(u_i) = eta u_i + \gamma_i$
- So, it is possible to compare utility **differences** across individuals:

 $u'_i - u_i > u'_j - u_j$ if and only if $\phi_i(u'_i) - \phi_i(u_i) > \phi_j(u'_j) - \phi_j(u_j)$

Theorem. Given anonymity, strict pareto, independence axioms, and **unit comparability**, the social welfare criterion must be **utilitarian**.

$$W(\boldsymbol{u}) = \sum_{i} u_{i}$$

Level comparability.

• Invariance transformation has the form

 $\boldsymbol{\phi}(\boldsymbol{u}) = (\phi_0(u_1), \dots, \phi_0(u_n))$ where ϕ_0 is strictly increasing.

• So, it is possible to compare utility **levels** across individuals.

 $u_i > u_j$ if and only if $\phi_i(u_i) > \phi_j(u_j)$

Theorem. Given anonymity, strict pareto, independence, separability axioms, and **level comparability**, the social welfare criterion must be **maximin or minimax**.

Problem with the utilitarian proof.

- The proof assumes that utilities have no more than unit comparability.
- This immediately rules out a maximin criterion, since identifying the minimum utility presupposes that utility **levels** can be compared.

Problem with the maximin proof.

- The proof assumes that utilities have **no more** than level comparability.
- This immediately rules out criteria that consider the spread of utilities.
- So, it rules out all the criteria we consider after maximin.

Alpha Fairness

Larger $\alpha \ge 0$ corresponds to greater fairness

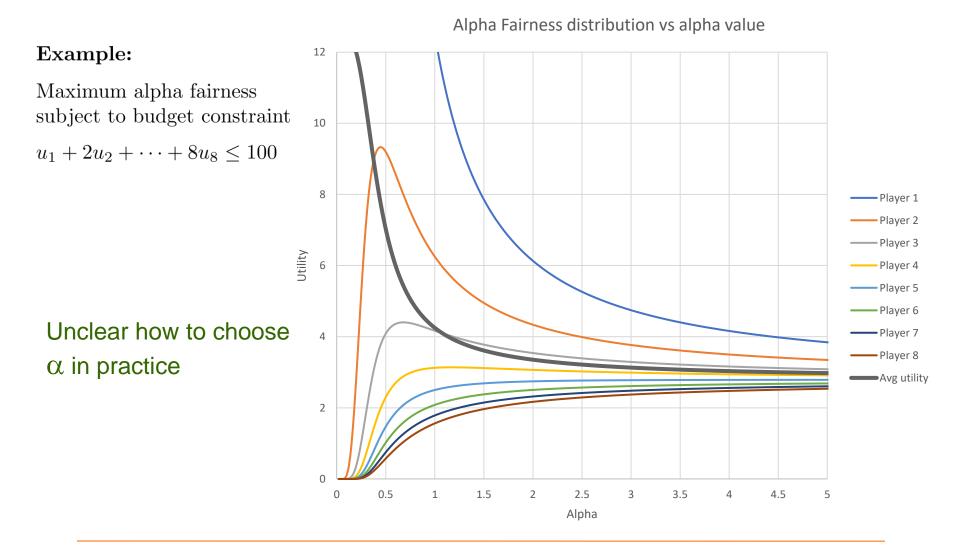
$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \\ \text{Mo \& Walrand 2000; Verloop, Ayesta \& Borst 2010} \end{cases}$$

Solution subject to budget constraint:

$$u_i = \frac{B}{a_i^{1/\alpha} \sum_j a_j^{1-1/\alpha}}, \text{ all } i$$

- Utilitarian when $\alpha = 0$, maximin when $\alpha \rightarrow \infty$
- Egalitarian distribution can have same social welfare as arbitrarily extreme inequality.
- Can be **derived** from certain axioms.
 Lan & Chiang 2011

Alpha Fairness



Alpha Fairness

Regionally decomposable

• Separable SWF \rightarrow yes.

Positive incentive rate for person $i = \frac{1}{\alpha} + \left(1 - \frac{1}{\alpha}\right) \frac{a_i^{1-1/\alpha}}{\sum a_j^{1-1/\alpha}}$

• Incentive to improve increases with current conversion efficiency when $\alpha < 1$, decreases when $\alpha > 1$.

Cross-subsidy to others =
$$\left(1 - \frac{1}{\alpha}\right) \frac{a_i^{1-1/\alpha}}{\sum_j a_j^{1-1/\alpha}}$$

- Negative when α < 1 (competition). Efficiency improvements transfer utility from other persons
- **Positive** when $\alpha > 1$ (**sharing**), improvements transfer utility **to** others

Nash 1950

Special case of alpha fairness ($\alpha = 1$)

• Also known as **Nash bargaining solution**, in which case bargaining starts with a default distribution *d*.

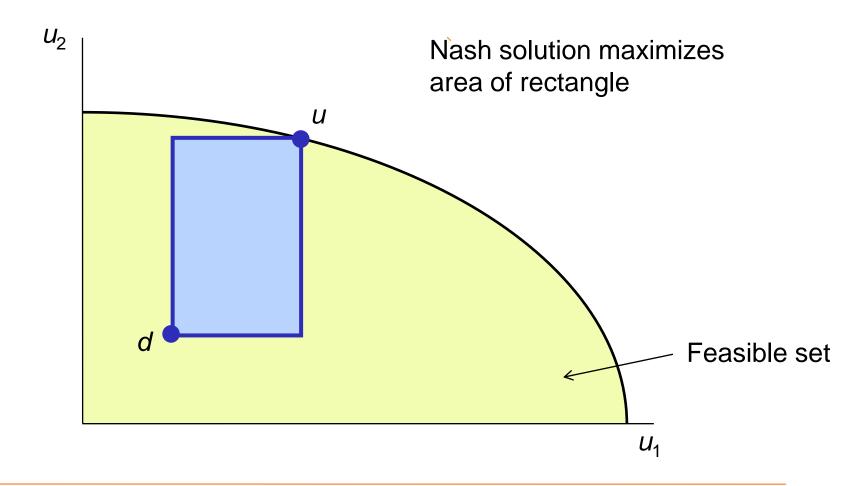
$$W(\boldsymbol{u}) = \sum_{i} \log(u_i - d_i) \text{ or } W(\boldsymbol{u}) = \prod_{i} (u_i - d_i)$$

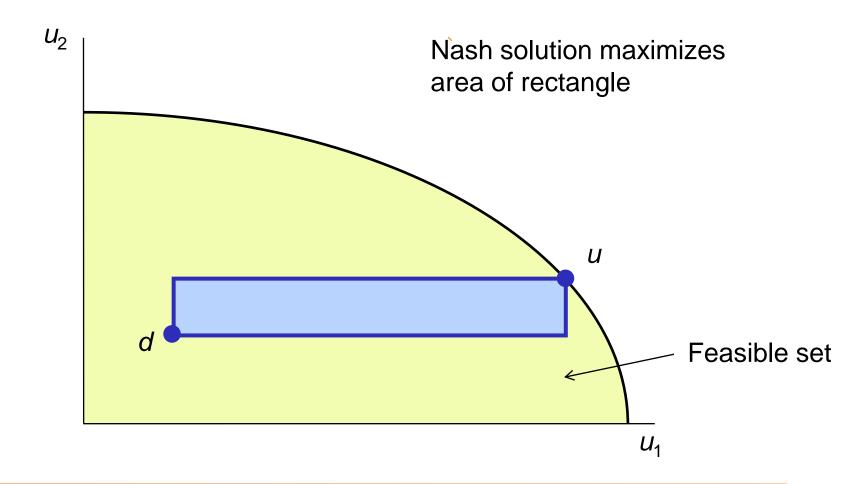
Solution subject to budget constraint

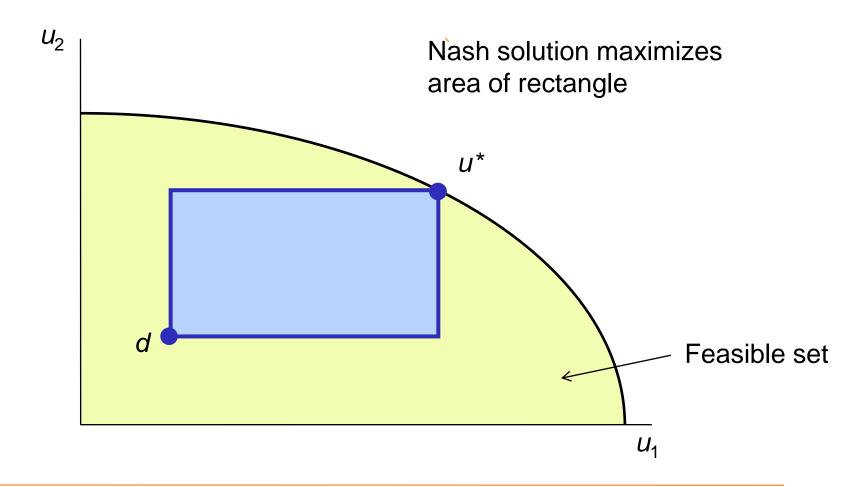
- Utility allotted in proportion to conversion efficiency.
- Can be **derived** from axiomatic and bargaining arguments.
- Used in engineering applications (telecom, traffic signaling).

Incentive rate = 1

Cross-subsidies = 0







Axiomatic derivation of proportional fairness

From Nash's article, based on:

- Anonymity, Pareto and independence axioms
- Scale invariance: invariance transformation $\phi_i(u_i) = \beta_i u_i$

Nash 1950

Axiomatic derivation of proportional fairness

From Nash's article, based on:

- Anonymity, Pareto and independence axioms
- Scale invariance: invariance transformation $\phi_i(u_i) = \beta_i u_i$

Nash 1950

Possible problem

Invariance under individual rescaling is better suited to negotiation procedures than assessing just distributions.

Bargaining justifications

"Rational" negotiation converges to the Nash bargaining solution. Assumes an initial utility distribution to which parties return if negotiation fails.

• Finite convergence (assuming a minimum distance between offers), based on a bargaining procedure of Zeuthen.

Harsanyi 1977

Zeuthen 1930

• Asymptotic convergence based on equilibrium modeling.

Rubinstein 1982

Binmore, Rubinstein, Wolinsky 1986

Bargaining justifications

"Rational" negotiation converges to the Nash bargaining solution. Assumes an initial utility distribution to which parties return if negotiation fails.

• Finite convergence (assuming a minimum distance between offers), based on a bargaining procedure of Zeuthen.

Harsanyi 1977

Zeuthen 1930

• Asymptotic convergence based on equilibrium modeling.

Rubinstein 1982

Binmore, Rubinstein, Wolinsky 1986

Possible problem

Not clear that rational negotiation leads to justice.

Axiomatic derivation of alpha fairness

- Certain axioms lead to a **family** of SWFs containing **alpha fairness**, along with logarithmic functions (including Theil & Atkinson indices).
- Key to the proof is an **axiom of partition**:

Lan and Chiang 2011

There exists a mean function h such that for any partition (u_1, u_2) of u and any two distributions u and u',

$$\frac{W(t\boldsymbol{u})}{W(t\boldsymbol{u}')} = h\Big(\frac{W(\boldsymbol{u}_1)}{W(\boldsymbol{u}_1')}, \frac{W(\boldsymbol{u}_2)}{W(\boldsymbol{u}_2')}\Big)$$

where t > 0 is an arbitrary scalar. This implies that h must be a geometric or power mean.

Axiomatic derivation of alpha fairness

- Certain axioms lead to a **family** of SWFs containing **alpha fairness**, along with logarithmic functions (including Theil & Atkinson indices).
- Key to the proof is an **axiom of partition**:

Lan and Chiang 2011

There exists a mean function h such that for any partition (u_1, u_2) of u and any two distributions u and u',

$$\frac{W(t\boldsymbol{u})}{W(t\boldsymbol{u}')} = h\Big(\frac{W(\boldsymbol{u}_1)}{W(\boldsymbol{u}_1')}, \frac{W(\boldsymbol{u}_2)}{W(\boldsymbol{u}_2')}\Big)$$

where t > 0 is an arbitrary scalar. This implies that h must be a geometric or power mean.

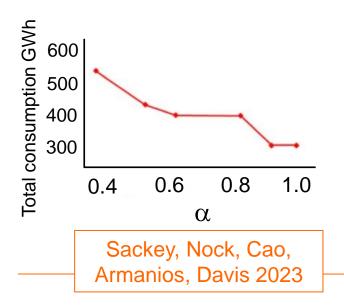
Possible problem

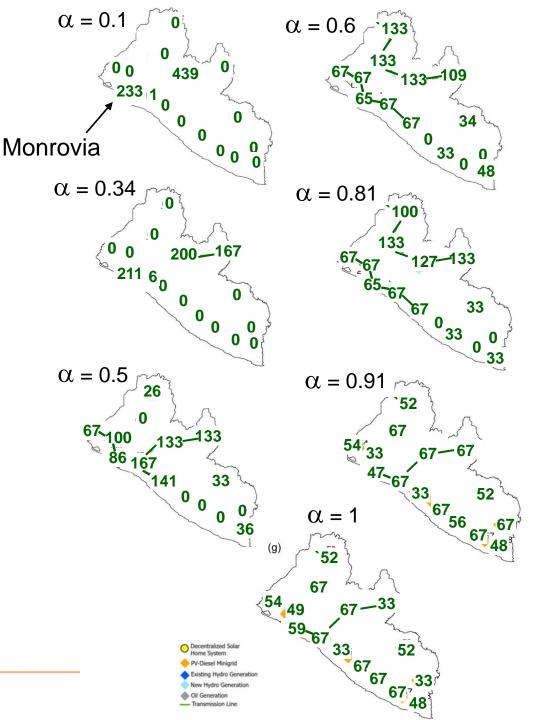
It is hard to interpret the axiom of partition.

Example of Alpha Fairness

Investment in electric generating capacity and transmission - Liberia

- Pure efficiency objective neglects the hinterland.
- Emphasis on fairness reduces total benefit.



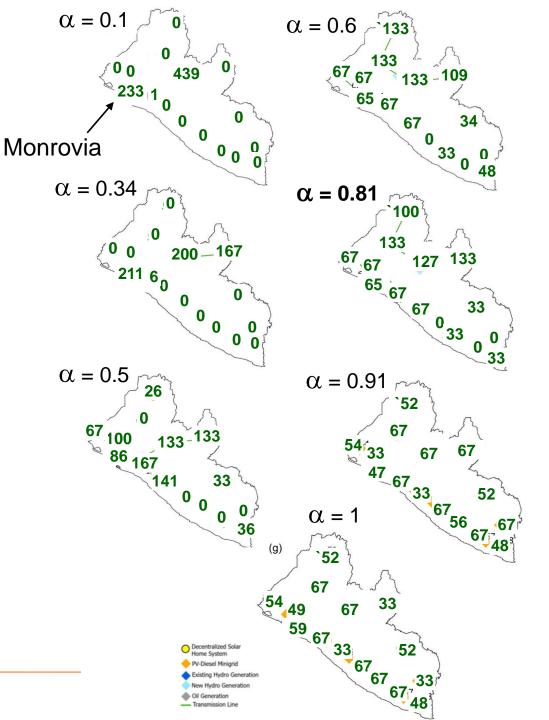


Example of Alpha Fairness

Investment in electric generating capacity and transmission - Liberia

- Pure efficiency objective neglects the hinterland.
- Emphasis on fairness reduces total benefit.
- Elicited value of $\alpha = 0.81$
 - Based on showing 9 hypothetical maps to U.S. engineering graduate students

Sackey, Nock, Cao, Armanios, Davis 2023

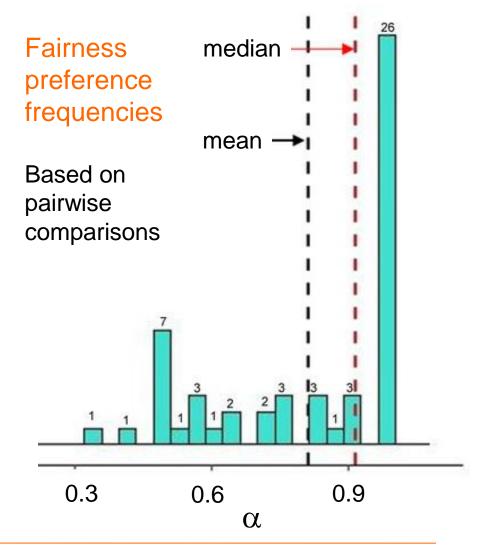


Example of Alpha Fairness

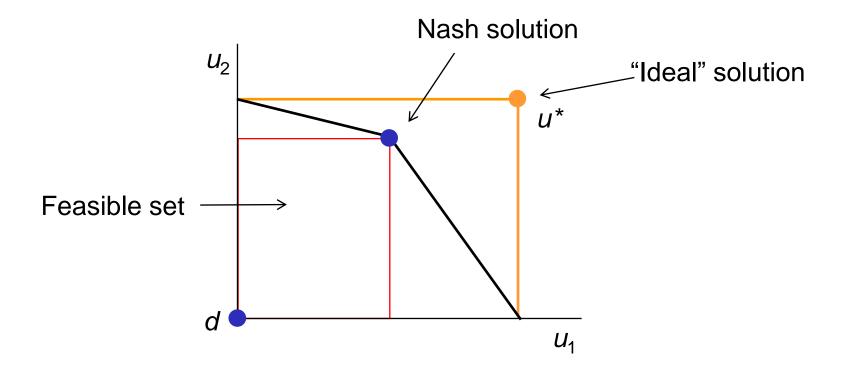
Investment in electric generating capacity and transmission

- Application in Liberia
- Pure efficiency objective neglects the hinterland.
- Emphasis on fairness neglects urban dwellers.
- Elicited value of α = 0.81
 - Based on showing 9 hypothetical maps to U.S. engineering graduate students

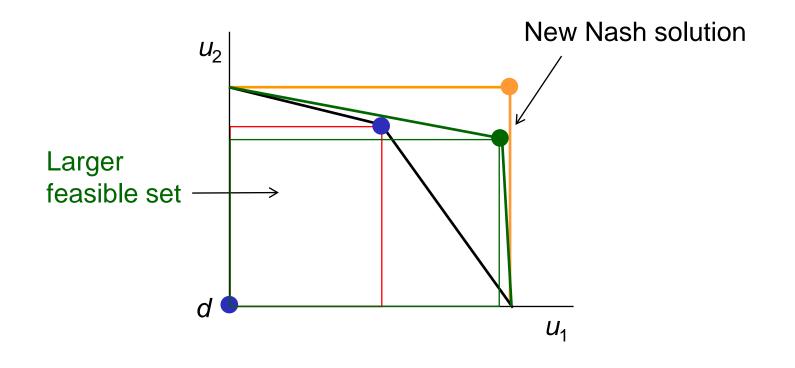
Sackey, Nock, Cao, Armanios, Davis 2023



• Begins with a critique of the Nash bargaining solution.

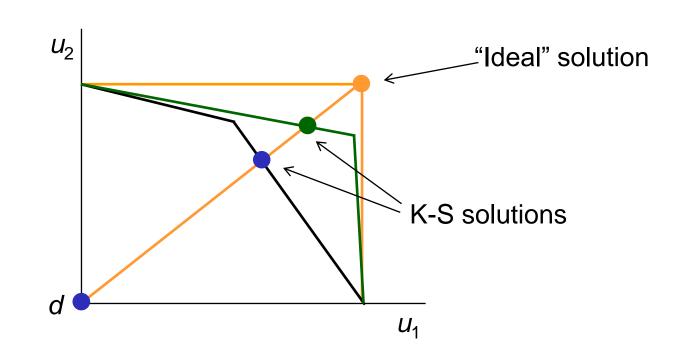


- Begins with a critique of the Nash bargaining solution.
- The new Nash solution is **worse** for player 2 even though the feasible set is **larger**.



• **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.

Kalai & Smorodinksy 1975



$$\max_{\beta, \boldsymbol{x}, \boldsymbol{u}} \left\{ \beta \mid \boldsymbol{u} = (1 - \beta)\boldsymbol{d} + \beta \boldsymbol{u}^{\max}, \ (\boldsymbol{u}, \boldsymbol{x}) \in S, \ \beta \leq 1 \right\}$$

Solution subject to budget constraint

- Same as proportional fairness.
- Seems reasonable for price or wage negotiation.
- Defended by some social contract theorists (e.g., "contractarians")

Gauthier 1983, Thompson 1994

Regionally decomposable...

- ...if collapsible
 - (i.e., if it is never optimal for central authority to take resources from regions, which can be checked by simple algebraic test)

Threshold Methods

Combining utility and maximin

- **Utility threshold:** Use a maximin criterion until the utility cost becomes too great, then switch some to a utilitarian criterion.
 - Fairness is a primary concern, but without sacrificing too much utility.
 - As in a medical context, emergency facility location, task assignment.

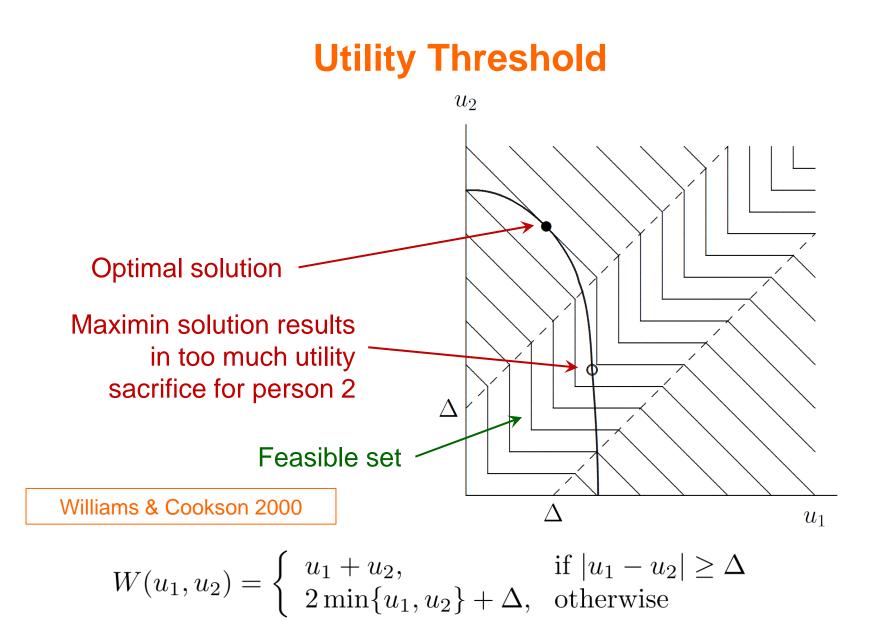
Williams & Cookson 2000

Threshold Methods

Combining utility and maximin

- **Utility threshold:** Use a maximin criterion until the utility cost becomes too great, then switch some to a utilitarian criterion.
 - Fairness is a primary concern, but without sacrificing too much utility.
 - As in a medical context, emergency facility location, task assignment.
- **Equity threshold:** Use a utilitarian criterion until the inequity becomes too great, then switch some to a maximin criterion.
 - Use when efficiency is the primary concern, but without excessive sacrifice by any individual.
 - As in telecommunications, disaster recovery, traffic control..

Williams & Cookson 2000



Generalization to *n* persons

$$W(\boldsymbol{u}) = (n-1)\Delta + \sum_{i=1}^{n} \max\left\{u_i - \Delta, u_{\min}\right\}$$

where $u_{\min} = \min_i \{u_i\}$ JH & Williams 2012

- $\Delta = 0$ corresponds to utilitarian criterion, $\Delta = \infty$ to maximin.
- Δ is chosen so that individuals with utility within Δ of smallest are sufficiently deprived to **deserve priority**.

Solution subject to budget constraint

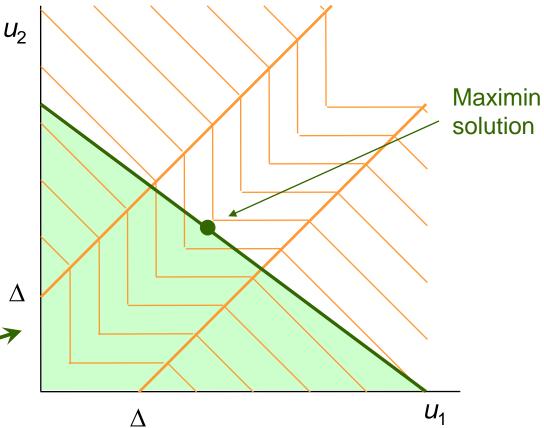
• Purely **utilitarian** for smaller values of Δ , **maximin** for larger values.

Theorem. When maximizing the SWF subject to a **budget constraint**, the optimal solution is purely **maximin** or **purely utilitarian**.

Purely maximin if

$$\Delta \ge B \Big(\frac{1}{a_{\langle 1 \rangle}} - \frac{n}{\sum_i a_i} \Big) \quad \Delta$$

Here, parties have \frown similar treatment costs, or Δ is large.

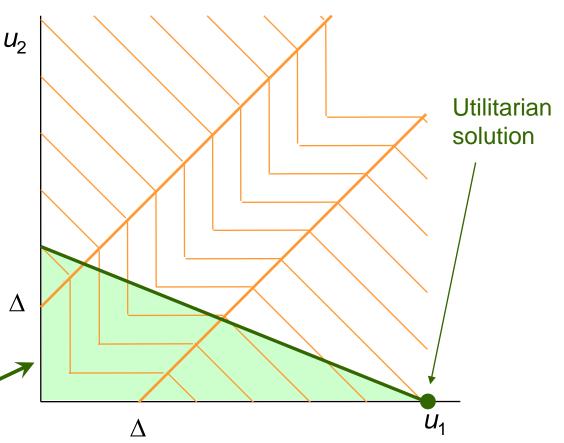


Theorem. When maximizing the SWF subject to a **budget constraint**, the optimal solution is purely **maximin** or **purely utilitarian**.

Purely utilitarian if

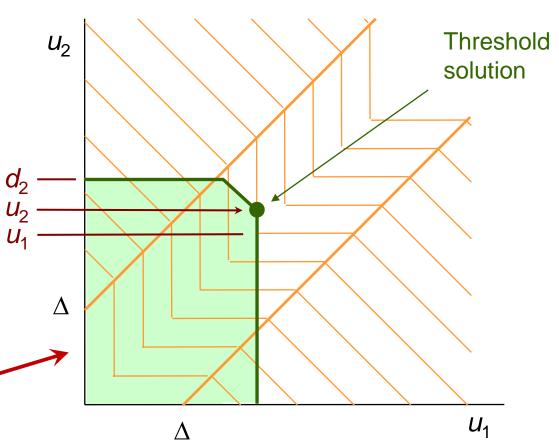
$$\Delta \le B\left(\frac{1}{a_{\langle 1\rangle}} - \frac{n}{\sum_i a_i}\right)$$

Here, parties have very different treatment costs, \checkmark or Δ is small.



Theorem. When maximizing the SWF subject to a **budget constraint and upper bounds** d_i at most one utility is **strictly between** its upper bound and the smallest utility.

Here, **one** utility u_2 is **strictly between** upper bound d_2 and - the smallest utility u_1 .

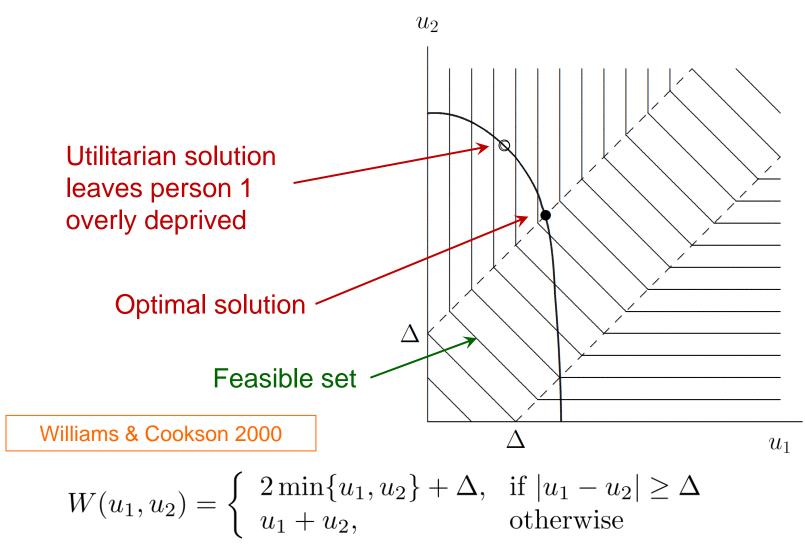


Not regionally decomposable

• This could be an advantage or disadvantage.

Incentive and cross-subsidy rates:

• Same as utilitarian (for small Δ) or maximin (for large Δ)



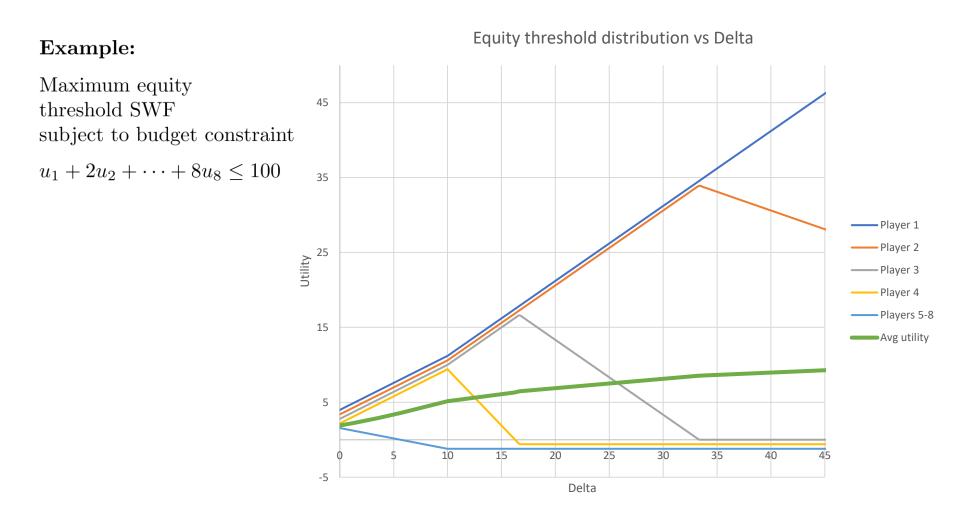
Generalization to *n* persons

$$W(\boldsymbol{u}) = n\Delta + \sum_{i=1}^{n} \min\{u_i - \Delta, u_{min}\}$$

- Δ is chosen so that well-off individuals **do not deserve more utility** unless utilities within Δ of smallest are also increased.
- Values **reversed**: $\Delta = \infty$ corresponds to utilitarian, $\Delta = 0$ to maximin.

Solution subject to budget constraint

- For large (more utilitarian) values of Δ, more efficient individuals get utility Δ, less efficient get zero.
- For small (more egalitarian) values of Δ , everyone gets something, but more efficient individuals get Δ more utility than less efficient.



Not regionally decomposable

Incentive rate:

- For large (more utilitarian) Δ , rate = 1 for one person with a certain intermediate utility level, zero for others
- For small (more egalitarian) Δ , rate is positive: individual *i*.

$$\overline{\sum_{j}^{a_i} a_j}$$
 for any

68

Cross-subsidies:

- For large (more utilitarian) Δ , subsidies are zero, except positive for the one person with an intermediate utility level, who benefits from the improvements of some others (namely, those with greater efficiencies).
- For small (more egalitarian) Δ , positive subsidies for all: \sum

Utility Threshold with Leximax

Combines utility and leximax to provide more sensitivity to equity.

SWFs W_1, \ldots, W_n are maximized sequentially, where W_1 is the utility threshold SWF defined earlier, and W_k for $k \ge 2$ is

$$W_{k}(\boldsymbol{u}) = \sum_{i=1}^{k-1} (n-i+1)u_{\langle i\rangle} + (n-k+1)\min\left\{u_{\langle 1\rangle} + \Delta, u_{\langle k\rangle}\right\} + \sum_{i=k}^{n} \max\left\{0, \ u_{\langle i\rangle} - u_{\langle 1\rangle} - \Delta\right\}$$

Chen & JH 2021

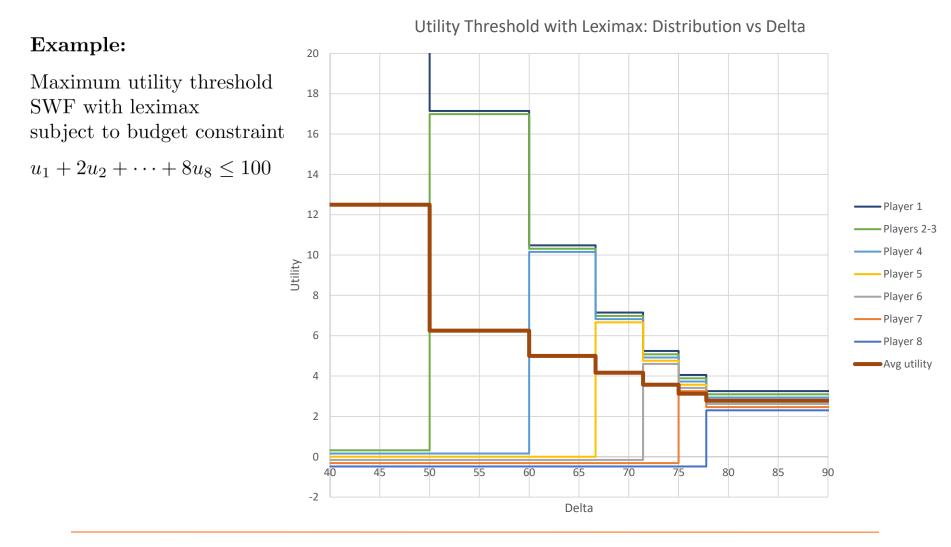
where $u_{\langle 1 \rangle}, \ldots, u_{\langle n \rangle}$ are u_1, \ldots, u_n in nondecreasing order.

Solution subject to budget constraint

- The *m* most efficient individuals receive equal utility $\sum_{j=1}^{m} a_j$, others zero.
- Larger Δ spreads utility over more individuals (larger *m*).

 $\frac{a_i}{m}$

Utility Threshold with Leximax



Utility Threshold with Leximax

Not regionally decomposable

Incentive rate:

• Individuals who receive **positive utility** have **positive** rate $\sum_{i=1}^{m} a_i$, others **zero**

Cross-subsidies:

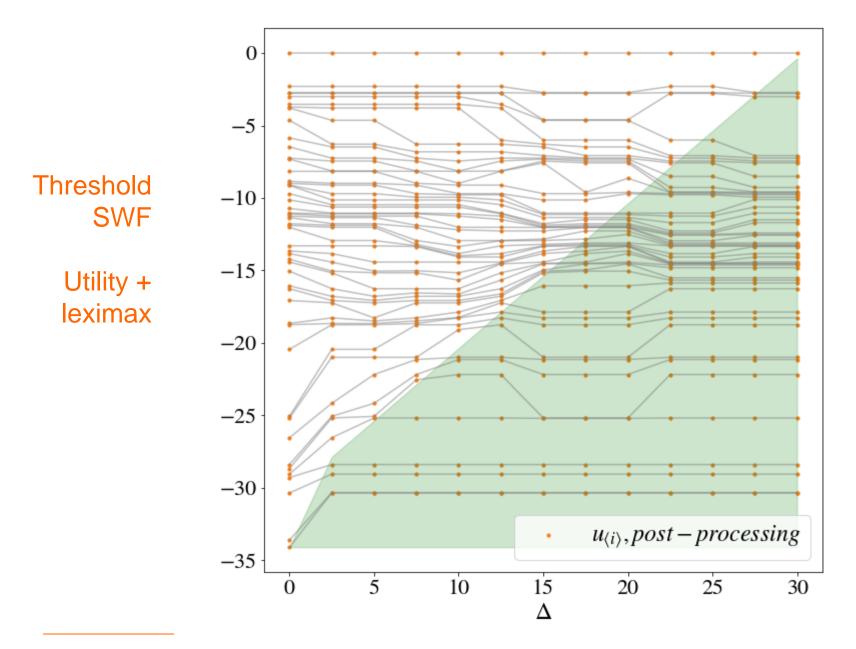
- Positive subsidies
- Zero for others.

$$\frac{a_i}{\sum_{j=1}^{m} a_j}$$
 to those who receive positive utility

Example of Utility Threshold with Leximax

- Select earthquake shelter locations in Istanbul.
- Utility = negative distance of each neighborhood to nearest shelter, subject to limited budget.
- 50 neighborhoods, 50 potential shelter locations.
- Solution time = 1 to 18 seconds for each value of Δ .

Problem due to Mostajabdaveh, Gutjahr & Salman 2019



Properties of Fair Solutions

Social welfare criterion	Solution structure with simple budget constaint	Special comment	
Utilitarian	Most efficient party gets everything Traditional objective		
Maximin/leximax	Everyone gets equal utility Leximax avoids wasting utility		
Alpha fairness	Fairness increases with α Utilitarian when $\alpha = 0$, maximin when $\alpha \rightarrow \infty$		
Kalai-Smorodinsky	Same solution as alpha fairnessUtility allotment iswith $\alpha = 1$ (proportional fairness)proportional to efficience		
Utility threshold with maximin	Purely utilitarian or maximin, depending on Δ Interesting structure when bounds are added		
Equity threshold with maximin	More efficient parties receive Δ more than less efficient parties	Least efficient parties receive zero	
Utility threshold with leximax	More efficient parties receive equal utility, others zero	For larger Δ , more parties receive utility but smaller allotment	

Properties of Fair Solutions

Social welfare criterion	Regionally decomposable?	Incentives and sharing with simple budget constaint
Utilitarian	Yes	Only most efficient party incentivized to improve efficiency, no sharing
Maximin/leximax	Yes	Less efficient parties have greater incentive to improve, benefits shared equally
Alpha fairness	Yes	Less efficient parties have greater incentive. Competitive when $\alpha < 1$, cooperative when $\alpha > \infty$
Kalai-Smorodinsky	Yes, if collapsible	Same as proportional fairness (α = 1)
Utility threshold with maximin	Νο	Same as utilitarian or maximin , depending on Δ
Equity threshold with maximin	Νο	For larger Δ , only one party incentivized to improve and receives all benefits. For smaller Δ , all are incentivized and benefit.
Utility threshold with leximax	Νο	Parties who receive positive utility are incentivized to improve and share benefits of efficiency improvement.

Questions or comments?