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Abstract

Optimization models typically seek to maximize overall benefit or
minimize total cost. Yet equity and fairness are important elements
of many practical decisions, and it is much less obvious how to
express them mathematically. We provide a critical survey of various
schemes that have been proposed for formulating ethics-related criteria,
including those that integrate efficiency and equity concerns. The
survey covers inequality measures, Rawlsian maximin and leximax
criteria, alpha fairness and proportional fairness (also known as the
Nash bargaining solution), Kalai-Smorodinsky bargaining, and recently
proposed utility-threshold and equity-threshold schemes for combining
utilitarian with maximin or leximax criteria. We introduce an n-person
model for the equity-threshold criterion. The paper also examines
statistical fairness metrics that are popular in machine learning,
including demographic parity, equalized odds, accuracy parity, and
predictive rate parity. We present what appears to be the best practical
approach to formulating each criterion in a linear, nonlinear, or mixed
integer programming model. We analyze the mathematical properties
of the various formulations, presenting new results in several cases,
and indicate some of the strengths and weaknesses of each. We also
cite relevant philosophical and ethical literature where appropriate.
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2 Formulating Equity and Fairness

1 Introduction

There is growing interest in incorporating equity-related criteria into opti-
mization models. Practical applications in health care, disaster management,
telecommunications, facility location, and other areas increasingly raise issues
related to the fair allocation of resources. Yet it is far from obvious how
to formulate such ethical concerns mathematically. While it is normally
straightforward to formulate an objective function that reflects efficiency or
cost, fairness can be understood in multiple ways, with no generally accepted
method for representing any of them in a mathematical idiom. While methods
for formulating equity concerns frequently appear in research papers, they are
often discussed and selected in an ad hoc manner.

We therefore undertake to provide a survey and assessment of a broad
range of equity criteria that can be incorporated into an optimization model.
We cover inequality metrics, Rawlsian maximin and leximax criteria, various
convex combinations of these, alpha fairness and proportional fairness (the
latter also known as the Nash bargaining solution), the Kalai-Smorodinsky
bargaining solution, and recently proposed utility-threshold and equity-
threshold criteria for combining utilitarianism with maximin and leximax
criteria. In particular, we introduce an n-person model for the equity-threshold
criterion. We also examine statistical fairness metrics that are popular in
machine learning, including demographic parity, equalized odds, accuracy
parity, and predictive rate parity. We present what appears to be the best
practical approach to formulating each criterion in a linear, nonlinear, or mixed
integer programming model. We analyze some mathematical properties of the
various formulations, present new results in several cases, and indicate some of
the strengths and weaknesses of each. We place particular emphasis on models
that combine efficiency and equity criteria, because both are important in most
practical applications.

To our knowledge, there is no existing survey of this kind. Karsu
and Morton (2015) discuss several models in their excellent survey of
inequality-averse optimization, along with applications and some underlying
mathematical theory. Ogryczak et al (2014) survey fairness criteria that have
been used in communication networks and location models, with a discussion of
their properties and relationship with leximax criteria. Our contribution differs
from these in that it aims for broad coverage of equity concepts while providing
a practical guide for the analyst who wishes to incorporate equity concerns into
an optimization model of a given application. It accordingly includes a focus
on how to formulate the various criteria for efficient solution by mathematical
programming software. It also covers equity formulations developed since the
earlier surveys, as well as fairness measures from machine learning. Finally,
it provides some references to relevant philosophical and ethical literature,
although we make no attempt here to resolve underlying philosophical issues.

We begin below by stating a generic optimization problem that provides
a framework for the discussion to follow. In particular, we suppose that
each equity criterion we consider is encapsulated in a social welfare function
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(SWF) that serves as the objective function of the optimization model. We
next describe two properties that are possessed by some of the SWFs and
that are helpful for understanding the nature of the equity concepts they
represent. These are the well-known Pigou–Dalton condition and a lesser
known, slightly weaker Chateauneuf–Moyes condition that is arguably better
suited to assess equity criteria. We determine which SWFs satisfy one or both
of these conditions, resulting in several new theorems that are proved in the
Appendix. The equity criteria we study (aside from the convex combinations
in Section 6) are summarized in Tables 1–3, which indicate the section of the
paper that deals with each. The concluding section of the paper draws on the
foregoing discussion to suggest some general guidelines for selecting an equity
criterion for a given application.

In the interest of brevity, we omit discussion of several fairness metrics that
are similar to those covered here, designed for specific applications, and/or
difficult to optimize. These include some of the fairness measures developed
for communications networks, such as Jain’s index (Jain et al 1984), QoE
fairness (Georgopoulos et al 2013, Hoßfeld et al 2018), TCP fairness (Pokhrel
et al 2016), G’s fairness index, and Bossaert’s fairness index (Mehta 2020).
Additional metrics from the economics literature include the entropy-based
Theil index (Theil 1967, Cowell and Kuga 1981) and the related Atkinson
index (Atkinson 1975). We also omit some statistical bias measures used in
machine learning, as described in Section 10.

2 Generic Optimization Problem

The task before us is to incorporate equity into an existing optimization model
of the form maxx{f(x) | x ∈ Sx}. A generic optimization problem that
accomplishes this can be stated

max
u,x

{
W (u)

∣∣ u = U(x), x ∈ Sx
}

(1)

where u = (u1, . . . , un) is a vector of utilities distributed across parties
1, . . . , n. The utilities can be profit, negative cost, or some other benefit that is
appropriate to the application. It is this distribution of utilities that we wish
to be equitable as well as, perhaps, efficient. We replace the original objective
function f(x), if any, with a social welfare function W (u) that measures the
desirability of a given utility distribution u. We want W (u) to incorporate
equity, as well as perhaps efficiency elements measured by f(x). The intent of
this paper is to survey and evaluate functions W (u).

The vector-valued function U(x) defines how the original problem variables
x determine the distribution of utilities. In many applications, some of the
original variables xj already represent the utilities we wish to distribute,
and there is no need to introduce additional variables ui. Nonetheless, we
will consistently refer to the utilities to be distributed as u1, . . . , un. To
simplify notation, we will suppose that the constraint u = U(x) is encoded in
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Table 1 Summary of fairness criteria, part 1. The columns labeled P–D and C–M indicate
whether the Pigou–Dalton and Chateauneuf–Moyes conditions are satisfied. The model
type assumes that the original problem constraints are linear with continuous variables.

Criterion P–D? C–M? Model Comments

Inequality measures

Relative range
(Section 4.1)

yes yes LP The spread between min and max utilities,
normalized by the mean. Inequality metrics
may be appropriate when there is a particular
interest in equality rather than broader
concepts of fairness.

Relative mean
deviation
(Section 4.1)

yes yes LP The normalized average deviation from
the mean. Takes in account all utilities
rather than only the two extremes.

Coefficient of
variation
(Section 4.1)

yes yes NLP1 The normalized standard deviation. Can
be used when large deviations from the
mean are disproportionately significant.

Gini coefficient
(Section 4.2)

yes yes LP Perhaps the best known measure of
inequality. Proportional to the area
between the Lorenz curve and a diagonal
line representing perfect equality. Lies in
the interval [0,1], with 0 indicating perfect
equality.

Hoover index
(Section 4.2)

yes yes LP The fraction of total utility that must be
redistributed to achieve perfect quality.
Also related to the Lorenz curve, and
proportional to the relative mean
deviation.

Fairness for the disadvantaged

Maximin
(Section 5.1)

yes yes LP Maximizes the minimum utility. Based on
the Rawlsian principle that inequality is
justified only to the extent that it
improves the welfare of the worst off. Once
maximin is obtained, does not consider the
welfare of other disadvantaged individuals.

Leximax
(Section 5.1)

yes yes LP Maximizes the welfare of the worst off,
then the 2nd worst off, and so forth.
Considers the welfare of all disadvantaged
individuals but requires solving a sequence
of optimization problems.

McLoone index
(Section 5.2)

no yes MILP Compares total utility utility of those
below the median to what they would
enjoy if brought up to the median.
Concerned only with the welfare of the
lower half.

1A convex quadratic programming problem with linear constraints.
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Table 2 Summary of fairness criteria, part 2.

Criterion P–D? C–M? Model Comments

Combining efficiency and fairness – Classical methods

Alpha fairness
(Section 7.1)

yes yes NLP2 Parameter α regulates equity vs efficiency,
with α = 0 corresponding to a pure utilitarian
and α =∞ to a pure maximin criterion.
Unclear how to interpret α in practice.

Proportional
fairness
(Section 7.1)

yes yes NLP2 Special case of alpha fairness with α = 1, also
known as the Nash bargaining solution, and
used in engineering applications. Has been
justified with axiomatic and bargaining
arguments, albeit with a strong interpersonal
noncomparability assumption.

Kalai-
Smorodinsky
bargaining
(Section 7.2)

no no LP Maximizes minimum relative concession by
maximizing equal fraction of each player’s
potential gain. Can be defended as outcome of
a bargaining procedure and tends to favor
those with greater opportunity. Failure of
P–D and C–M conditions may be a concern.

Combining efficiency and maximin fairness – Threshold methods

Utility threshold
(Section 8.1)

no yes MILP3 Uses a maximin criterion until utility cost of
fairness becomes too great, and then switches
some players to a utilitarian criterion. The
break point is controlled by parameter ∆,
selected so that players within ∆ of the lowest
utility are seen as sufficiently disadvantaged
to receive greater priority. Equity component
is sensitive to the utility level only of the
worst-off player.

Equity threshold
(Section 8.2)

yes yes LP Uses a utilitarian criterion until inequity
becomes too great, and then switches some
players to a maximin criterion. The parameter
∆ is selected so that players already more
than ∆ above the lowest utility are not seen
as deserving greater utility if the other
utilities remain unchanged. The equity
component is again sensitive to the utility
level only of the worst-off player.

2A concave nonlinear maximization problem with linear constraints.
3The MILP model of the threshold function is sharp (defines convex hull of feasible set).
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Table 3 Summary of fairness criteria, part 3.

Criterion P–D? C–M? Model Comments

Combining efficiency and leximax fairness – Threshold methods

Utility
threshold,
predefined
priorities
(Section 9.1)

no no MILP Maximizes a utility threshold function that
combines utilitarian and maximin criteria,
then applies a leximax criterion to optimal
solutions if one or more have a utility spread
of ∆ or less. Makes the strong assumption
that priorities of the players can be fixed in
advance. SWF is discontinuous for n ≥ 3, a
potential drawback.

Utility
threshold, no
predefined
priorities
(Section 9.2)

no yes MILP4 Solves a sequence of optimization problems in
which the kth problem determines the kth
smallest utility in the socially optimal
solution. Each problem assumes the smallest
k − 1 utilities have been fixed and maximizes
a SWF that combines utilitarian and maximin
criteria while giving the kth worst-off player
priority that is regulated by ∆. Combines
leximax and utilitarian criteria and so
considers utilities of all disadvantaged players,
not just the very worst-off.

Statistical fairness metrics

Demographic
parity
(Section 10.1)

LP The fraction of minority individuals selected
for a benefit should be the same as the fraction
of majority individuals selected. A very strict
criterion that can deny individuals benefits for
which they are known to be qualified.

Equalized odds
(Section 10.2)

LP The fraction of (un)qualified individuals who
are selected should be the same in minority
and majority groups.

Accuracy parity
(Section 10.3)

LP The accuracy rate (fraction of individuals
correctly selected or rejected) should be the
same in minority and majority groups.

Predictive rate
parity
(Section 10.4)

MINLP5 The fraction of individuals correctly selected
should be the same for minority and majority
groups. Unclear that the advantages of this
criterion (if any) justify solving the difficult
optimization problem that results.

4A sequence of tractable MILP models is solved. Valid inequalities are identified.
5A difficult mixed integer/nonlinear optimization problem.
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constraints represented by (u,x) ∈ S, so that the problem (1) becomes simply

max
u,x

{
W (u)

∣∣ (u,x) ∈ S
}

(2)

Thus (u,x) ∈ S if and only if u = U(x) and x ∈ Sx.
Fairness can also be represented as a constraint by bounding the social

welfare function W (u). This results in an optimization problem of the form

max
u,x

{
f(x)

∣∣W (u) ≥ LB, (u,x) ∈ S
}

(3)

To simplify exposition, we will discuss only models of the form (2), but they
can be converted to fairness-constrained problems when desired.

A simple medical triage problem provides an illustration of the generic
model. There are n patients who require treatment, but subject to a limited
budget of B. The cost of treating patient i is ci. The utility experienced by
patient i, measured in quality-adjusted life years, is ai without treatment and
ai + bi with treatment. The objective is to allocate treatments in an equitable
and effective fashion. If binary variable xi = 1 when patient i is treated, the
utility function U(x) is given by Ui(x) = aixi + bi for i = 1, . . . , n. The
resulting optimization problem (2) is

max
u,x

W (u)

∣∣∣∣∣∣
∑
i

cixi ≤ B

ui = ai + bixi, xi ∈ {0, 1}, all i


The choice of social welfare function W (u) should reflect how equity and
effectiveness are to be understood and balanced in this context.

A major element of this paper is showing how to write the optimization
problem (2) in a form suitable for one of the highly advanced mathematical
programming solvers now available. Naturally, the difficulty of (2) depends to
a great degree on the nature of the constraints that describe the feasible set
Sx. However, if we suppose that these constraints are (or can be approximated
by) linear equations and inequalities over continuous variables, the resulting
models have the form indicated in Tables 1–3. Eleven of the 19 are linear
programming (LP) models, a problem class that is extremely well solved.
Four are mixed integer/linear programming (MILP) problems, which are
combinatorial in nature, but for which highly developed solvers are available.
Three are nonlinear programming (NLP) problems that are of only moderate
difficulty because they minimize convex functions (or maximize concave
functions) subject to linear constraints. Indeed, one of these is a highly
tractable convex quadratic programming problem with linear constraints.
Only one of the models, a nonconvex mixed integer/nonlinear programming
(MINLP) problem, poses a substantial and possibly insuperable challenge.

The linearity assumption for constraints is actually quite reasonable in
many applications, because it is consistent with a great deal of flexibility to
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define the problem. Suppose, for example, that the set Sx of feasible values of x
is convex, and the utility function U(x) is linear or concave, as it commonly is
when there are nonincreasing returns to scale. In such a case, the feasible set S
can be approximated to any desired degree with a linear system Au+Bx ≤ b.

If some of the original problem variables xi are discrete, however, an
otherwise LP problem becomes an MILP problem, as in the medical example
just stated. An NLP problem becomes a mixed integer/nonlinear programming
(MINLP) problem, which can be quite hard to solve. An MILP problem of
course remains an MILP problem.

3 Pigou–Dalton and Chateauneuf–Moyes
Conditions

The Pigou–Dalton condition is frequently used to assess social welfare
functions, particularly those that measure equality (Dalton 1920, Moulin
2004). It is satisfied when any utility transfer from a better-off party to a
worse-off party increases (or does not reduce) social welfare. However, the
suitability of this condition for assessing an equity metric has been questioned,
for example by Chateauneuf and Moyes (2005). They propose a slightly weaker
condition that considers transfers of utility from a better-off class to a worse-
off class rather than from one individual to another. The choice of condition is
relevant here, because we find that some interesting SWFs satisfy the weaker
condition but not the stronger.

Formally, a social welfare function W (u) satisfies the Pigou–Dalton
condition if W (u + εei − εej) ≥ W (u) for any i, j and any ε > 0 for which
ui + ε ≤ uj − ε, where ei, ej are the ith and jth unit vectors, respectively. A
stricter form of the condition requires W (u+ εei − εej) > W (u), but we use
the weaker form.

The Chateauneuf–Moyes (C-M) condition examines the consequences of
transferring a given amount of utility from individuals whose utility lies at or
above that of a given individual (taking an equal share from each) to those
whose utility lies at or below below that of a less fortunate individual (giving an
equal share to each). Chateauneuf and Moyes provide arguments for why this
type of condition is preferable to Pigou–Dalton. One is the simple observation
that while a pairwise Pigou–Dalton transfer reduces inequality between two
individuals, it may increase inequality between those individuals and others.
A C-M transfer does not incur this problem, because the donor and recipient
classes respectively lie completely above and below the rest of the population.

To define the C-M condition formally, let us say that a C-M transfer is a
transfer of utility from u to u′ such that u1 ≤ · · · ≤ un as well as u′1 ≤ · · · ≤ u′n,
and for some pair of integers `, h with 1 ≤ ` < h ≤ n, we have u` < uh and

u′ = u+
ε

`

∑̀
i=1

ei −
ε

n− h+ 1

n∑
i=h

ei
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for some ε > 0. A SWF W (u) satisfies the C-M condition if C-M transfers
never decrease social welfare. That is, W (u′) ≥ W (u) for any C-M transfer
from u to u′.

It is difficult to say in general whether a SWF should satisfy either of
these conditions, but an indication of whether they do so may be useful in
determining whether the SWF is suitable for a particular application.

4 Inequality Measures

The first type of fairness measure we study is the degree of equality in
the distribution of utilities, for which several statistical metrics have been
proposed (Cowell 2000, Jenkins and Van Kerm 2011). There is a wide variety
of philosophical opinion on the ethical significance of equality, ranging from
the view that we have an irreducible obligation to strive for equality, to the
view that inequality is unfair only when it reduces total utility (Frankfurt 2015,
Parfit 1997, Scanlon 2003). In any event, it is generally acknowledged that
equality is not the same concept (or cluster of concepts) as fairness, even when
the two are closely related. An equality metric can be appropriate in a context
where a specifically egalitarian distribution is the primary goal, without regard
for efficiency or other forms of equity.

Inequality measures have been used for inequity averse optimization in a
broad range of applications. Examples of these papers are summarized in Karsu
and Morton (2015). More recently, inequality measures are also considered
in the growing area of algorithmic fairness. For instance, Leonhardt et al
(2018) study Gini coefficient type measures for estimating the disparity in user
satisfaction and recommendation quality of recommender systems. Speicher
et al (2018) and Sühr et al (2019) respectively adopt a generalized entropy
index to evaluate the degree of unfairness in predictors trained by machine
learning and in two-sided matching platforms.

We present optimization models for relative range, relative mean deviation,
coefficient of variation, the Gini coefficient, and the Hoover index. All of them
are easily shown to satisfy the Pigou–Dalton condition. The McLoone index
can also be regarded as a measure of inequality, but we consider it in the next
section as measuring fairness for the disadvantaged.

4.1 Measures of relative dispersion

All of the dispersion measures we consider are normalized by the mean utility
so as to be invariant under rescaling of utilities. The relative range of utilities
is an inequality metric that, when negated, yields the SWF

W (u) = −(1/ū)
(
umax − umin

)
where umax = maxi{ui}, umin = mini{ui}, and ū = (1/n)

∑
i ui. We assume

with little loss of generality that the constraint set implies ū > 0. Then
since the SWF is a ratio of affine functions, the formulation of W (u) in an
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optimization model can be linearized using the same change of variable as in
linear-fractional programming (Charnes and Cooper 1962). Thus we introduce
a scalar variable t and write u = u′/t and x = x′/t, which yields the
optimization model

min
x′,u′,t

u′min,u
′
max

{
u′max − u′min

∣∣∣∣ u′min ≤ u′i ≤ u′max, all i

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′

}

where u′min, u
′
max are regarded as variables along with x′, u′, and t. If

(x̂′, û′, û′min, û
′
max, t̂) solves this problem, then u = û′/t̂ is a distribution

that minimizes the relative range. The tractability of this model depends on
whether the constraints defining S become harder after the change of variable.
The easiest case arises when the constraints are linear, as in linear-fractional
programming. If the original constraints are Au + Bx ≤ b, they become
another linear system Au′+Bx′ ≤ tb after the variable change. More generally,
if the original constraints have the form g(u,x) ≤ b for homogeneous g, they
retain essentially the same form g(u′,x′) ≤ tb after the variable change.

Another dispersion metric is the relative mean deviation, which measures
inequality more comprehensively by considering all utilities rather than only
the minimum and maximum. The SWF is

W (u) = −(1/ū)
∑
i

|ui − ū|

This can be linearized by using the same change of variables as before:

min
x′,u′,v,t

{∑
i

vi

∣∣∣∣ −vi ≤ u′i − ū′ ≤ vi, all i

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′

}
(4)

where v1, . . . , vn are new variables. This is again an LP problem if S is defined
by a linear constraint set.

The coefficient of variation is the normalized standard deviation. It may
be appropriate when large deviations from the mean are disproportionately
significant, but it has the possible drawback of introducing a nonlinear
objective function. The SWF is

W (u) = − 1

ū

[ 1

n

∑
i

(ui − ū)2
] 1

2

Although the numerator is nonlinear, we can use the same change of variable
to formulate the optimization problem as

min
x′,u′,v,t

{[ 1

n

∑
i

(u′i − ū′)2
]1

2

∣∣∣∣ ū′ = 1, t ≥ 0
(u′,x′) ∈ S′

}
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This is not an LP problem, but we can obtain the same optimal solution
by solving it without the exponent 1

2 . If the feasible set S′ is convex, this
yields a convex nonlinear programming problem in which all local optima
are global optima. If S is defined by linear constraints, it can be solved by
particularly efficient quadratic programming algorithms that are available in
many state-of-the-art optimization packages.

4.2 Gini coefficient and Hoover index

The Gini coefficient is by far the best known measure of inequality, as it
is routinely used to measure income and wealth inequality (Gini 1912). It
is proportional to the area between the Lorenz curve and a diagonal line
representing perfect equality and therefore vanishes under perfect equality.
The SWF is W (u) = −G(u), where

G(u) =
1

2ūn2

∑
i,j

|ui − uj |

Again applying the change of variable from linear-fractional programming, the
Gini criterion can be linearized:

min
x′,u′,V,t

 1

2n2

∑
i,j

vij

∣∣∣∣ −vij ≤ u′i − u′j ≤ vij , all i, j

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′


where vij is a new variable for all i, j. This is an LP problem if S is defined
by linear constraints.

The Hoover index is also related to the Lorenz curve, as it is proportional
to the maximum vertical distance between the Lorenz curve and a diagonal
line representing perfect equality (Hoover 1936). It is also proportional to the
relative mean deviation and therefore satisfies the Pigou–Dalton condition.
It can be interpreted as the fraction of total utility that would have to be
redistributed to achieve perfect equality. The SWF is

W (u) = − 1

2nū

∑
i

|ui − ū|

The Hoover index can be minimized by solving the same model (4) as for the
relative mean deviation.

5 Fairness for the Disadvantaged

Rather than focus solely on inequality, fairness measures can prioritize the
disadvantaged. Far and away the most famous of such measures is the
difference principle of John Rawls (1999), a maximin criterion that is based on
careful philosophical argument and debated in a vast literature (surveyed in
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Freeman 2003, Richardson and Weithman 1999). The difference principle can
be plausibly extended to a lexicographic maximum principle. There is also the
McLoone index, which is a statistical measure that emphasizes the lot of the
less advantaged.

The Rawlsian maximin criterion has been a popular fairness measure for
decades. Early works on fair resource allocation, such as bandwidth allocation,
often choose the maximin criterion to seek the best possible performance for
the worst-off service among services competing for bandwidth (Luss 1999,
Ogryczak and Śliwiński 2002, Ogryczak et al 2008). Recent research has
applied the criterion to more diverse problem contexts. For example, Stelmakh
et al (2018) design an algorithm for making paper-reviewer assignment that
maximizes the review quality of the most disadvantaged paper, and Nanda
et al (2020) formalize a maximin fairness measure for ridesharing. In addition,
the Rawlsian view of fairness is gaining recognition in machine learning as an
alternative to the dominant statistical fairness metrics (Hashimoto et al 2018,
Heidari et al 2019, Shah et al 2021).

5.1 Rawlsian criteria

The Rawlsian difference principle states that inequality should exist only to
the extent that it is necessary to improve the lot of the worst-off. It is defended
with a social contract argument that, in its simplest form, maintains that
the structure of society must be negotiated in an “original position” in which
people do not yet know their station in society. Rawls argues that one can
rationally assent to the possibility of ending up on the bottom only if that
person would have been even worse off in any other social structure, whence
an imperative to maximize the lot of the worst-off. The principle is intended
to apply only to the design of social institutions, and only to the distribution
of “primary goods,” which are goods that any rational person would want.
Yet it can be adopted as a general criterion for distributing utility, namely a
maximin criterion that maximizes the simple SWF W (u) = mini{ui}. This
objective is readily linearized, as in the optimization model

max
x,u,w

{
w
∣∣ w ≤ ui, all i; (u,x) ∈ S

}
The maximin criterion obviously satisfies the Pigou–Dalton condition,
although almost vacuously, because it considers only the smallest utility level.

The maximin criterion can force equality even when doing so is very costly
in terms of total utility. Suppose, for example that S is defined only by a budget
constraint

∑
i xi ≤ B (with x ≥ 0) and utility functions ui = aixi. Then

the maximin solution equalizes the utilities, with each individual experiencing
utility u0 = B/

∑
i(1/ai). If individual k’s welfare is very expensive to provide,

perhaps due to an incurable disease, then ak is very small, and individual k
consumes almost all the resources, u0/ak. The utility of everyone else is
reduced to the same low level u0 that can be achieved for individual k. One
might impose an upper bound dk on individual k’s resource consumption,
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but then the maximin criterion is satisfied by reducing everyone’s utility even
more, namely to individual k’s utility akdk. This leaves unused resources B −
dkak

∑
i(1/ai), but the maximin criterion provides no incentive to distribute

them.
The maximin criterion can be plausibly extended to lexicographic

maximization (leximax), which can remove the problem of leftover resources
in the previous example. Leximax is achieved by first maximizing the smallest
utility subject to resrouce constraints, then the second smallest, and so forth.
While this can avoid leftover resources, it does not avoid the possibly high cost
of equality in the absence of constraints that prevent it.

A leximax solution can computed by solving a sequence of optimization
problems

max
x,u,w

{
w

∣∣∣∣ w ≤ ui, ui ≥ ûik−1
, i ∈ Ik

(u,x) ∈ S

}
(5)

for k = 1, . . . , n, where (x̂, û) is an optimal solution of problem k, ûi0 = −∞,
and ik is defined so that

ûik = min
i∈Ik
{ûi}, with Ik = {1, . . . , n} \ {i1, . . . , ik−1}

If there are two or more utilities ûi that achieve the minimum mini∈Ik{ûi}, it
is necessary to enumerate all solutions that result from breaking the tie to be
assured of finding a leximax soution. Ogryczak and Sliwinski (2006) showed
how to obtain a leximax solution with a single optimization model, but it is
impractical for most purposes due to the very large coefficients required in the
objective function.

5.2 McLoone index

The McLoone index compares the total utility of individuals at or below the
median utility to the utility they would enjoy if all were brought up to the
median utility. The index is 1 if nobody’s utility is strictly below the median,
and it approaches 0 if the utility distribution has a very long lower tail (on
the assumption that all utilities are positive.) The McLoone index benefits the
disadvantaged by rewarding equality in the lower half of the distribution, but
it is unconcerned by the existence of very rich individuals in the upper half.
The SWF is

W (u) =
1

|I(u)|ũ
∑
i∈I(u)

ui

where ũ is the median of utilities in u and I(u) is the set of indices of utilities
at or below the median, so that I(u) = {i | ui ≤ ũ}.

The McLoone index violates the Pigou–Dalton condition but satisfies the
Chateauneuf–Moyes condition. A violation of Pigou–Dalton can be seen in a
3-person example with u = (a, 1, b), where 0 < a < 1 < b. The median is 1
and the McLoone index is 1

2 (1 + a). A utility transfer from u3 to u2 yields the
utility vector (a, 1 + ε, b− ε), where we suppose 0 < ε ≤ 1

2 (b− 1). The median
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is now 1+ε and the McLoone index is 1
2 (1+a+ε)/(1+ε). The McLoone index

has become smaller despite less inequality, a violation of the P–D condition.
However, we have the following.

Theorem 1 The McLoone index satisfies the Chateauneuf–Moyes condition.

We can formulate the McLoone index optimization problem as a mixed
integer programming (MIP) problem with a fractional objective function, by
using standard “big-M” modeling techniques from integer programming. The
model uses 0–1 variables δi, where δi = 1 when i ∈ I(u). The constant M is a
large number chosen so that ui < M for all i. The model is

max
x,u,m
y,z,δ


∑
i yi∑
i zi

∣∣∣∣∣∣∣∣∣
m−Mδi ≤ ui ≤ m+M(1− δi), all i

yi ≤ ui, yi ≤Mδi, δi ∈ {0, 1}, all i

zi ≥ 0, zi ≥ m−M(1− δi), all i∑
i δi ≤ n/2, (u,x) ∈ S


where the new variable m represents the median, variable yi is ui if δi = 1
and 0 otherwise, and variable zi is m if δi = 1 and 0 otherwise in the optimal
solution. The objective function can be linearized by using the same change of
variable as in linear-fractional programming:

max
x′,u′,m′

y′,z′,t,δ


∑
i

y′i

∣∣∣∣∣∣∣∣∣∣∣∣∣

u′i ≥ m′ −Mδi, all i

u′i ≤ m′ +M(1− δi), all i

y′i ≤ u′i, y′i ≤Mδi, δi ∈ {0, 1}, all i

z′i ≥ 0, z′i ≥ m′ −M(1− δi), all i∑
i z
′
i = 1, t ≥ 0∑

i δi ≤ n/2, (u′,x′) ∈ S′


The model is an MILP problem when the constraints defining S are linear.

6 Convex Combinations

We now move to schemes that combine efficiency and fairness. The most
obvious approach is to maximize a convex combination of the two:

F (u) = (1− λ)
∑
i

ui + λΦ(u)

where Φ(u) is an equity measure. A perennial problem with convex
combinations is that it is difficult to interpret λ, particularly when Φ(u)
is measured in units other than utility. For example, if we use the Gini
coefficient G(u) as a measure of inequity, then we must combine utility with
a dimensionless quantity Φ(u) = 1 − G(u). Larger values of λ give greater



Springer Nature 2021 LATEX template

Formulating Equity and Fairness 15

weight to equality, but in a practical situation it is unclear how to attribute
any meaning to a chosen value of λ.

Eisenhandler and Tzur (2019) use a product rather than a convex
combination of utility and 1−G(u), which nicely reduces to an SWF that is
easily linearized:

W (u) =
∑
i

ui −
1

n

∑
i<j

|uj − ui|

Yet we now have a convex combination of total utility and another equality
metric (one that is proportional to the negative mean absolute difference); in
particular, it is a convex combination in which λ = 1/2. This may be reasonable
for the intended application, but one may ask why this particular value of λ is
suitable, and whether other values should be used in other contexts. Aside from
this are the general issues raised by using equality as a surrogate for fairness.

Mostajabdaveh et al (2019) use a linear combination that is equivalent to∑
i ui + µ(1−G(u))

∑
i ui, where µ ∈ [0, 1]. This at least combines quantities

measured in the same units. Yet we again have the problem of justifying a
weight µ. In fact, this combination is equivalent to the convex combination
implied by the Eisenhandler and Tzur criterion, except that λ is µ/(1 + 2µ)
rather than 1

2 .
One can combine utility with the Rawlsian maximin criterion by using the

convex combination

W (u) = (1− λ)
∑
i

ui + λmin
i
{ui} (6)

This, like the proposal of Mostajabdaveh et al, combines quantities that are
measured in the same units. Yet it is again unclear how to select a suitable
value of λ. Note that if we index utilities so that u1 ≤ · · · ≤ un, (6) is simply
a weighted sum u1 + (1− λ)

∑
i>1 ui that gives somewhat more weight to the

lowest utility. Yet how much more is appropriate?
One can refine criterion (6) by giving gradually decreasing weights w1 >

w2 > · · · > wn to the utilities in an SWF of the form

W (u) =
∑
i

wiui (7)

Yet this only complicates the task of assigning weights. In addition, since we
do not know how to index the utilities by size in advance, we have the difficult
modeling challenge of ensuring that weight wi is assigned to the ith smallest
utility. There is a long line of work studying this formulation as the objective
function for multi-criteria decision making (e.g., Yager 1997, Ogryczak and
Śliwiński 2003). Hu and Chen (2020) provide a novel perspective on this SWF
in machine learning: they view (7) as the objective function in a classifier
training model and establish its correspondence with the commonly studied
fairness constrained loss-minimization training models.
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7 Alpha Fairness and Kalai-Smorodinksy
Bargaining

Alpha fairness and Kalai-Smorodinksy bargaining provide alternative and
perhaps more satisfactory means of combing equity and efficiency than convex
combinations. Alpha fairness regulates the combination with a continuous
parameter α, where larger values of α signify a greater emphasis on equity.
A famous special case is the Nash bargaining solution, which corresponds
to α = 1. Kalai-Smordinsky bargaining, proposed as an alternative to Nash
bargaining, allots the parties the largest possible fraction of their potential
utility while observing fairness by equalizing that fraction.

7.1 Alpha fairness and Nash bargaining

Alpha fairness (Mo and Walrand 2000, Verloop et al 2010) is represented by
a family of SWFs having the form

Wα(u) =


1

1− α
∑
i

u1−α
i for α ≥ 0, α 6= 1∑

i

log(ui) for α = 1

These SWFs form a continuum that stretches from a utilitarian criterion
(α = 0) to a maximin criterion as α → ∞. Lan et al (2010) provide an
axiomatic treatment of α-fairness in the context of network resource allocation,
and Bertsimas et al (2012) study worst-case equity/efficiency trade-offs implied
by this criterion.

The parameter α can be interpreted as quantifying the equity/efficiency
trade-off, because utility uj must be reduced by (uj/ui)

α units to compensate
for a unit increase in ui (< uj) while maintaining constant social welfare. This
gives priority to less-advantaged parties, as we desire, with α indicating how
much priority. In particular, the fact that (uj/ui)

α > 1 when ui < uj implies
that Wα(u) satisfies the Pigou–Dalton condition for all α. Yet it is not obvious
what kind of trade-off, and therefore what value of α, is appropriate for a given
application. There is no apparent interpretation of α independent of its role
in the SWF.

The problem of maximizing Wα(u) can be solved directly in the form

max
x,u

{
Wα(u)

∣∣ (u,x) ∈ S
}

without reformulation. The objective function is irreducibly nonlinear, but it
is concave for all α ≥ 0. Thus any local optimum is a global optimum if the
feasible set is convex. The problem can be solved to optimality by such efficient
algorithms as the reduced gradient method, which is a generalization of the
simplex method for LP. The fact that Wα(u) has a simple closed-form gradient



Springer Nature 2021 LATEX template

Formulating Equity and Fairness 17







u

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................................................

. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .

u1

u2

1







u
eumax

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

....................................................................................................

u1

u2

1

(a) (b)

Fig. 1 (a) Nash bargaining solution for two players. (b) Kalai-Smorodinsky bargaining
solution for two players. In both cases, the default position is the origin.

simplifies solution. Maximizing alpha fairness may therefore be tractable for
reasonably large instances, particularly if the constraints defining S are linear.

Proportional fairness results from setting α = 1 and is often measured by
the product Πiui rather than its logarithm. Maximizing proportional fairness
yields the Nash bargaining solution (Nash 1950), which should not be confused
with the Nash equilibrium of game theory. It corresponds to selecting a point
u in the feasible set that maximizes the volume of the hyperrectangle with
opposite corners at u and the origin. This is illustrated in Fig. 1(a), where
each point on the plot represents the utility outcomes for two parties that
result from some distribution of resources. The set of feasible utility vectors
is the area under the curve. The Nash bargaining solution is the black dot,
which is the feasible point that maximizes the area of the shaded rectangle.
Proportional fairness is frequently used in engineering, such as for bandwidth
allocation in telecommunication networks and traffic signal timing (Mazumdar
et al 1991, Kelly et al 1998).

Proportional fairness has axiomatic and bargaining-based derivations that
might be seen as justifying the parameter setting α = 1. For example, Nash
(1950) showed that his bargaining solution for two persons is implied by a set
of axioms for utility theory. Harsanyi (1977), Rubinstein (1982), and Binmore
et al (1986) showed that the Nash solution is the (asymptotic) outcome of
certain rational bargaining procedures. Yet the axiomatic derivation relies on
a strong axiom of cardinal noncomparability across parties that is central
to the proof. The axiom assumes that the ranking of utility vectors is
invariant under affine transformations of the form φi(ui) = βiui + γi, which
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arguably rules out the kind of utility comparisons we need in order to assess
fairness (Hooker 2013). Furthermore, the bargaining theories assume that the
parties begin with a default utility allocation d = (d1, . . . , dn) on which they
fall back if bargaining fails. The proportional fairness SWF then becomes
W (u) = Πi(ui − di). An unfair starting point d could lead to an unfair
outcome even under a rational bargaining procedure, and even if we grant that
rational bargaining from a fair starting point necessarily yields a fair outcome.
This weakens the bargaining argument for the fairness of the Nash solution in
general.

Another issue with proportional fairness, and alpha fairness in general, is
that they can assign equality the same social welfare as arbitrarily extreme
inequality. In a 2-player situation, for example, the distribution u = (s, s) has
the same social welfare value as (t, T ), where

t =

{
s2/T, if α = 1(
2s1−α − T 1−α)1/(1−α)

, if α > 1 and 2s1−α > T 1−α

Thus for α = 1, we have t → 0 has T → ∞, and for α > 1, t → 21/(1−α)s
as T → ∞, even when social welfare is held fixed. Alpha fairness judges an
egalitarian solution to be no better than a solution in which one party has
arbitrarily more wealth than the other. This anomaly does not arise when
0 ≤ α < 1.

7.2 Kalai-Smorodinsky bargaining

The Kalai-Smorodinsky (K-S) bargaining solution provides parties the largest
possible fraction of their “ideal” utility, subject to the condition that the
fraction is the same for all parties (Kalai and Smorodinsky 1975). A party’s
ideal utility is the maximum feasible utility that party could receive if the
utilities of the other parties were ignored. Increases in utility are measured
with respect to the default utility allocation.

One motivation for the K-S criterion is that it maximizes total utility
while maintaining fairness for all players, where fairness takes into account
the fact that allocating utility to some players is more costly than to others.
This perspective can be suitable in bargaining contexts, as when labor and
management negotiate wages (Alexander 1992). They may see a solution as fair
when the two parties make the same relative concession. A technical motivation
for the criterion is that it has a monotonicity property that the Nash solution
lacks: when the feasible set is enlarged, the negotiated utilities of the players
never decrease. This property is not necessarily desirable, as when enlargement
allows one player to enjoy much greater utility at a small cost to other players.
In any event, the K-S bargaining solution is defended by Thompson (1994) and
is arguably consistent with the contractarian ethical philosophy developed by
Gauthier (1983).
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Mathematically, the objective is to find the largest scalar β such that u =
(1−β)d+βumax is a feasible utility vector, where each umax

i is the maximum
of ui over all feasible utility vectors u. The bargaining solution is the vector
u that maximizes β. Figure 1(b) illustrates the idea for two players when the
default position d is the origin. The K-S solution (black dot) is the highest
point at which the diagonal line intersects the feasible set.

Formally, the SWF for K-S bargaining might be defined

W (u) =

{∑
i ui, if u = (1− β)d+ βumax for some β with 0 ≤ β ≤ 1

0, otherwise

where umax
i = maxx,u{ui

∣∣ (u,x) ∈ S} for each i. The SWF clearly
violates the Pigou–Dalton condition, because (supposing d = 0) it regards
any utility distribution u1, . . . , un with ratios different from umax

1 , . . . , umax
m as

less socially desirable. For example, if we have a 2-person utility distribution
(u1, u2) = (βumax

1 , βumax
2 ) with umax

1 6= umax
2 for some β with 0 < β ≤ 1,

then a utility transfer that tends to equalize the distribution reduces social
welfare. The Chaueauneuf–Moyes condition is violated for the same reason.
These facts should be carefully considered before the K-S solution is used in
applications. On the other hand, the optimization problem for the K-S criterion
is straightforward:

max
β,x,u

{
β
∣∣ u = (1− β)d+ βumax, (u,x) ∈ S, β ≤ 1

}
Axiomatic justifications are given for the K-S solution by Kalai and

Smorodinsky as well as by Thompson, but they again rely on a strong axiom
of cardinal noncomparability. A bargaining justification might be given by
arguing that it is rational for each player to minimize relative concession,
and repeated rounds of bargaining will lead under suitable conditions to an
equilibrium in which their relative concessions are equal and minimized.

On the other hand, the K-S scheme may allocate far more utility to an
individual whose welfare is easily improved than to one who is less fortunate.
For example, it may allocate treatment resources to persons suffering from
the common cold to provide them the same fraction of their maximum health
potential as patients with chronic kidney failure. The K-S model offers no
means to prevent this kind of outcome by adjusting the trade-off between
equity and efficiency, as is possible with alpha fairness.

More generally, one can ask why the potential utility that fortune or
fate has granted to some individuals should necessarily be relevant to a fair
allocation. Perhaps fairness sometimes demands a contrasting approach: rather
than rewarding fortunate individuals strictly in proportion to their potential,
we should give greater emphasis to improving the lot of those in less fortunate
circumstances (Dworkin 1981a; 1981b; 2000; Barry 1988).
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8 Threshold Criteria with Maximin Fairness

Williams and Cookson (2000) suggest two ways to combine utilitarian and
maximin objectives using threshold criteria. One, based on a utility threshold,
begins with a maximin criterion but switches to a utilitarian criterion when the
overall utility cost of fairness becomes too great. The other, based on an equity
threshold, begins with utilitarianism and switches to a maximin criterion when
inequity becomes too great.

These proposals were originally defined only for two persons, and it is not
obvious how to extend them to multiple parties. Hooker and Williams (2013)
provide an n-person extension for the utility-threshold criterion, formulate
it as a mixed integer programming problem, study its polyhedral properties,
and apply it to a healthcare provision problem. After summarizing this work,
we suggest an n-person extension of the equity-threshold criterion. It is more
straightforward to formulate and can, in fact, yield a linear programming
model.

An advantage of the threshold criteria is that they regulate the equity-
efficiency trade-off with a parameter ∆ that has a practical meaning in the
n-person models. When a utility threshold is used, parties with utility within ∆
of the worst-off are regarded as disadvantaged and deserving of special priority.
When an equity threshold is used, parties whose utility is already more than
∆ above the lowest are not regarded as deserving greater utility if the other
utilities remain unchanged.

8.1 Utility-threshold criterion

The 2-person utility-threshold model of Williams and Cookson uses a maximin
criterion when the two utilities are sufficiently close to each other, specifically
|u1 − u2| ≤ ∆, and otherwise it uses a utilitarian criterion. This is illustrated
in Fig. 2, where the feasible set is the area under the curve. The maximin
solution (open circle) requires a substantial sacrifice from person 2. As a result,
the utilitarian solution (black dot) earns slightly more social welfare and is the
preferred choice. The SWF can be written

W (u1, u2) =

{
u1 + u2, if |u1 − u2| ≥ ∆
2 min{u1, u2}+ ∆, otherwise

The maximin criterion is modified from the standard formula min{u1, u2} to
ensure continuity of the SWF as one shifts between the utilitarian and the
maximin objective.

Hooker and Williams (2012) generalize W (u) to n parties as follows. The
utility ui of party i belongs to the fair region if ui − umin ≤ ∆ and otherwise
to the utilitarian region, where umin = mini{ui}. A party whose utility is in
the fair region is considered sufficiently disadvantaged to deserve priority. The
generalized SWF W (u) counts all utilities in the fair region as equal to umin, so
that they are treated in solidarity with the worst-off, and all other utilities as
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Fig. 2 Contours for the utility-threshold SWF.

themselves. Copies of ∆ are added to the SWF to ensure continuity of W (u).

W (u) = (n− 1)∆ +

n∑
i=1

max
{
ui −∆, umin

}
(8)

The parameter ∆ regulates the equity/efficiency trade-off, with ∆ = 0
corresponding to a purely utilitarian objective and ∆ =∞ to a purely maximin
objective.

Hooker and Williams extend W (u) to problems in which utility is
distributed to groups of different sizes, where each member of the group
receives the same utility. This is useful when allocating resources to geographic
regions, demographic groups, organizations, and so forth. Let si and ui
respectively denote the number of individuals in group i and the utility of each
individual in the group. The function W g(u) considers a group i to be in the
fair region when its per capita ui is within ∆ of umin.

W g(u) =
(∑

i

si − 1
)

∆ +
∑
i

si max
{
ui −∆, umin

}
(9)

Tractable MIP models are formulated for maximizing W (u) and W g(u)
subject to auxiliary constraints ui−uj ≤M required for MIP representability.
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The model for maximizing W g(u) is

max
x,u,δ,v,w,z


(∑

i

si
)
∆ +

∑
i

sivi

∣∣∣∣∣∣∣∣∣∣∣

ui −∆ ≤ vi ≤ ui −∆δi, all i

w ≤ vi ≤ w + (M −∆)δi, all i

ui − ui ≤M, all i, j

ui ≥ 0, δi ∈ {0, 1}, all i

(u,x) ∈ S


(10)

The model for individuals is obtained by setting si = 1 for all i. This is
an MILP model when the constraints (u,x) ∈ S are linear. Hooker and
Williams prove that this representation of W g(u) is sharp (i.e., its continuous
relation describes the convex hull of the feasible set) and is therefore the
tightest possible linear model. Sharpness may, of course, be lost when the
constraints (u,x) ∈ S are added. The practicality of the model was verified
with experiments on a healthcare resource allocation instance of realistic size.

Gerdessen et al (2018) make several observations regarding properties of
the SWF (8). In particular, the solutions obtained by varying ∆ need not all
lie on the Pareto frontier defined by the convex combination (6) of utilitarian
and maximin objectives. This is in fact to be expected, because the convex
combination balances total utility with only the welfare of the worst-off party,
while (8) takes into account how many parties are disadvantaged (i.e, in the
fair region).

A weakness of the utility-threshold criteria (8) and (9) is that the actual
utility levels of the disadvantaged parties, other than the very worst-off, have
no effect on the value of the SWF. This is illustrated in the 3-person example
of Fig. 3, which shows the contours of W (u1, u2, u3) with ∆ = 3 and u1 fixed
to zero. The SWF is constant in the shaded region, meaning that the utilities
allocated to persons 2 and 3 have no effect on social welfare as measured by
W (u), so long as they remain in the fair region. As a result, many solutions
that deliver the same social welfare differ greatly with respect to equity. This
problem is addressed in Section 9 by combining a utilitarian with a leximax
criterion.

It is stated in Karsu and Morton (2015) that W (u) satisfies the Pigou–
Dalton condition, but this is true only for n = 2. Figure 3 provides a
counterexample for n = 3. The move from point A to point B represents a
utility transfer from a better-off party to a worse-off party but strictly reduces
social welfare. Yet W (u) satisfies the slightly weaker C-M condition.

Theorem 2 The utility-threshold social welfare function W (u) satisfies the
Chateauneuf–Moyes condition.

The utility-threshold criterion also escapes an anomaly that, as noted
earlier, characterizes alpha fairness. It cannot assign equality the same social
value as arbitrarily extreme inequality. In a 2-person context, for example,
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Fig. 3 Contours of the utility-threshold SWF W (0, u2, u3). The function is constant in
the shaded region.

an egalitarian distribution u = (s, s) can have the same social value as a
distribution in which one party has no utility and the other ∆ + 2s, but the
gap can be no greater than this.

8.2 Equity-threshold criterion

Williams and Cookson define the 2-person equity-threshold SWF to be
utilitarian when |u1−u2| ≤ ∆ and otherwise maximin. In Fig. 4, the utilitarian
solution (open dot) is unfair to person 1, and the welfare-maximizing solution
is more egalitarian (black dot).

W (u1, u2) =

{
2 min{u1, u2}+ ∆, if |u1 − u2| ≥ ∆
u1 + u2, otherwise

We generalize this SWF to n parties in a manner similar to the Hooker–
Williams approach. The main difference is that we now say a utility ui belongs
to the fair region if ui−umin ≥ ∆, otherwise it is in the utilitarian region. Yet
we continue to count utilities in the fair region as equal to umin and those in
the utilitarian region utilities as themselves. This yields the SWFs

W (u) = n∆ +

n∑
i=1

min{ui −∆, umin} (11)

W g(u) =
( n∑
i=1

si

)
∆ +

n∑
i=1

si min{ui −∆, umin} (12)
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Fig. 4 Contours for the equity-threshold SWF.

As before, W g(u) is designed for distribution over groups.
These SWFs have two main effects. One is that a utilitarian criterion is

applied to everyone whose utility is within ∆ of the lowest. The other is that
increasing a utility that is already more than ∆ greater than the lowest adds
nothing to social welfare if the other utilities remain unchanged. Like the
utility-threshold criterion, the equity-threshold criterion can equate solutions
that have very different equity characteristics. This is illustrated in Fig. 5,
where all the solutions in the shaded region have the same social welfare.

While the utility-threshold SWF satisfies only the Chateauneuf–Moyes
condition, we have the following:

Theorem 3 The equity-threshold SWF W (u) satisfies the Pigou–Dalton condition
and therefore the Chateauneuf–Moyes condition.

Unlike the utility-threshold SWF, the equity-threshold SWF has a simple
linear model.

max
x,u,v,w,z

n∆ +
∑
i

vi

∣∣∣∣∣∣∣∣∣
vi ≤ w ≤ ui, all i

vi ≤ ui −∆, all i

w ≥ 0

(u,x) ∈ S


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Fig. 5 Contours of the equity-threshold SWF W (0, u2, u3). The function is constant in
the shaded region.

The formulation for the group SWF W g(u) is the same, except that the
objective function is (∑

i

si

)
∆ +

∑
i

sivi

These formulations are LP problems when linear constraints define S.

9 Threshold Criteria with Leximax Fairness

As pointed out in the previous section, threshold-based combinations that rely
on maximin fairness are sensitive to the utility level of only the very worst-off
party. The resulting SWFs equate distributions that can differ substantially in
their equity characteristics. This tends to become a problem in practice when
the constraint set severely restricts the maximum utility of some individual.
The solution will almost certainly assign this person the maximum utility,
regardless of what the rest of the problem is like. The equity situation of other
disadvantaged parties become irrelevant, so long as their utilities are within
∆ of the lowest. As a result, equity plays almost no role in the solution. This
situation can be addressed to a great degree by replacing maximin fairness
with leximax fairness. We consider two proposals for doing so, both extensions
of the Hooker–Williams approach. One assumes that utility recipients can
be ranked by priority in advance. The other makes no such assumption and
obtains a socially optimal distribution by maximizing a sequence of SWFs,
each of which combines utility and a maximin criterion.
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9.1 Predetermined preference order

McElfresh and Dickerson (2018) propose a method for combining utilitarian
and leximax criteria in the context of kidney exchange. It relies on the
assumption that the parties can be given a preference ordering in advance. It
first maximizes a SWF that combines utilitarian and maximin criteria in a way
that treats the most-preferred party as the worst-off. If all optimal solutions
of this problem lie in the utilitarian region, a utilitarian criterion is used to
select one of the optimal solutions. (Here, a utility vector u is said to be in
the fair region if maxi{ui} − mini{ui} ≤ ∆, and otherwise in the utilitarian
region.) Otherwise a leximax criterion is used for all of the optimal solutions,
subject to the preference ordering (i.e., maximize u1 first, then u2 etc.). If we
index the parties in order of decreasing preference, the SWF is

W (u) =


nu1, if |ui − uj | ≤ ∆ for all i, j∑
i

ui + sgn(u1 − ui)∆, otherwise (13)

McElfresh and Dickerson state that W (u) has continuous contours, but
this is true only for n = 2. For a counterexample with n = 3, we note that
W (0, 0,∆ + ε) = ε and W (0, ε,∆ + ε) = 2ε − ∆ for arbitrarily small ε > 0.
The discontinuity of the SWF raises questions regarding its suitability for
application, since a slight change in the utility distribution could bring about
a large and unexpected change in the measurement of social welfare.

While W (u) satisfies the Pigou–Dalton condition for n = 2 (if one considers
only utility transfers from u2 to u1), it violates both the P–D and Chateauneuf–
Moyes conditions when n = 3. For example, a C-M transfer that converts
(u1, u2, u3) from (ε, 0,∆+ε) to (ε, ε,∆) reduces social welfare from 2ε+∆ to ε.

McElfresh and Dickerson maximize W (u) using an algorithm that is
specialized to the kidney exchange problem, but we can state a general mixed
integer model.

max
u,x
w1,w2
y,φ,δ


w1 + w2

∣∣∣∣∣∣∣∣∣∣∣∣

w1 ≤ nu1, w1 ≤Mφ

w2 ≤
∑
i

(ui + yi), w2 ≤M(1− φ)

ui − uj −∆ ≤M(1− φ), all i, j
yi ≤ ∆, yi ≤ −∆ +Mδi, ui − u1 ≤M(1− δi), all i

(u,x) ∈ S; φ, δi ∈ {0, 1}, all i


Two additional issues should be considered. One is the need for preassigned

priorities. While it is possible to specify in advance a preference ranking of
parties in some applications, such as the kidney exchange problem, this is
not possible in many applications. Also the leximax criterion is not used until
optimal solutions of the SWF are already obtained, and then applied only to
the optimal solutions. It may be preferable to use a leximax criterion when
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considering all feasible distributions, rather than those that are already optimal
in some sense.

9.2 A sequence of social welfare functions

Chen and Hooker (2020; 2021) avoid assuming a pre-determined preference
ordering of recipients by maximizing a sequence of social welfare functions
W1(u), . . . ,Wn(u). The SWFs successively give priority to the worst-off
recipient, the second worst-off, and so forth, while in each case considering the
impact on total utility by means of a threshold criterion. The first function
W1(u) is identical to the Hooker–Williams function in (11), and the remainder
are defined as follows:

Wk(u) =

k−1∑
i=1

(n− i+ 1)u〈i〉 + (n− k + 1) min
{
u〈1〉 + ∆, u〈k〉

}
+

n∑
i=k

(
u〈i〉 − u〈1〉 −∆

)+
, k = 2, . . . , n

where γ+ = max{0, γ}, and where u〈1〉, . . . , u〈n〉 are u1, . . . , un in
nondecreasing order. The parameter ∆ again regulates the efficiency/equity
trade-off by giving preference to individuals whose utility is within ∆ of the
lowest, with greater weight to the more disadvantaged. Very similar SWFs
are given for groups of individuals. It is shown that all of these SWFs are
continuous.

A socially optimal distribution is found by first solving a problem P1 given
by

max
u,x

{
W1(u,x)

∣∣∣ |ui − uj | ≤M, all i, j; (u,x) ∈ S
}

(14)

and then solving problems Pk given by

max
u,x

Wk(u,x)

∣∣∣∣∣∣
uij = ūij , j = 1, . . . , k − 1

ui ≥ ūik−1
, ui − ūi1 ≤M, i ∈ Ik
(u,x) ∈ S

 (15)

The indices ij are defined so that uij is the utility determined by solving Pj . In
particular, uij is the utility with the smallest value among the unfixed utilities
in an optimal solution obtained by solving Pj . Thus

ij = arg min
i∈Ij

{
u

[j]
i

}
where u[j] is an optimal solution of Pj and Ij = {1, . . . , n}\{i1, . . . , ij−1}. We

denote by ūij = u
[j]
ij

the solution value obtained for uij in Pj . We need only
solve Pk for k = 1, . . . ,K+1, where K is the largest k for which ūik ≤ ūi1 +∆.
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The solution of the social welfare problem is then

ui =

{
ūi for i = i1, . . . , iK−1

u
[K]
i for i ∈ IK

The MILP model for solving P1 with groups is (10). Using notation similar
to that for the goal programming model (5), the MILP formulation for solving
Pk with groups, k ≥ 2, is

max
x,u,δ,ε
v,w,τ,z


z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z ≤
(∑

i∈Ik si − 1
)
τ +

∑
i∈Ik sivi

0 ≤ vi ≤Mδi, i ∈ Ik
vi ≤ ui − ûi1 −∆ +M(1− δi), i ∈ Ik

τ ≤ ûi1 + ∆, τ ≤ w, w ≥ ûi1
w ≤ ui ≤ w +M(1− εi), i ∈ Ik

ui − ûi1 ≤M, i ∈ Ik∑
i∈Ik εi = 1; δi, εi ∈ {0, 1}, i ∈ Ik

(u,x) ∈ S


(16)

While this is not a sharp model in general for k ≥ 2, Chen and Hooker identify
valid inequalities that can strengthen the linear relaxation of Pk:

zk ≤
∑
i∈Ik

siui (17)

zk ≤
(∑
j∈Ik

si

)
uj + β

∑
j∈Ik\{i}

sj(uj − ūik−1
), i ∈ Ik (18)

where

β =
M −∆

M − (ūik−1
− ūi1)

=
(

1− ∆

M

)(
1−

ūik−1
− ūi1
M

)−1

Formulations (10) and (16) are used to solve healthcare resource and
earthquake shelter location problems of realistic size in a matter of seconds for
a given value ∆.

We have already seen that W1(u) can violate the Pigou-Dalton condition
but satisfies the Chateauneuf–Moyes condition. The same is true for Wk(u) for
k ≥ 2. These functions fail Pigou-Dalton in counterexamples similar to Fig. 2.
Regarding the C-M condition, we have the following:

Theorem 4 The social welfare functions Wk(u) satisfy the Chateauneuf–Moyes
condition for k = 2, . . . , n.

Although each Wk(u) satisfies the C-M condition, we show that feasible
sets can be contrived in which a C-M transfer may not transform a socially
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optimal solution to another socially optimal solution. For example, suppose
n = 4, ∆ = 5, and the feasible set consists only of the three vectors on the left:

u1 = (1, 2, 8, 9) (24, 15, 27, 35)
u2 = (2, 3, 7, 8) (24, 18, 32, 39)
u3 = (1, 2, 3, 12) (25, 16, 22, 28)

The corresponding values (W1(u), . . . ,W4(u)) are shown on the right.
Distribution u2 results from applying a C-M transfer to the socially optimal
distribution u1, but u2 is not socially optimal because u1 = 2 in no optimal
solution of P1. Rather, the unique optimal solution of P1 is u3, in which
u1 = 1. This situation can occur when a socially optimal distribution u is not
an optimal solution of P1. In the example, u1 is not an optimal solution of P1.
It is unclear whether this should be seen as a weakness of the Chen–Hooker
approach, or as evidence of the inherent complexity of balancing equity and
efficiency.

10 Statistical Fairness Metrics

The mathematical formulation of equity has become a major issue in the field of
machine learning, because machine learning algorithms are employed to make
high-stake decisions and require precisely coded criteria for assessing whether
those decisions are fair. As summarized in Mehrabi et al (2019), fairness in
machine learning seeks to eliminate “any prejudice or favoritism toward an
individual or a group based on their inherent or acquired characteristics.”
One well-known example that motivates extensive interest in machine learning
fairness is the series of research efforts on whether the COMPAS software,
supported by a recidivism risk prediction algorithm, is biased against African-
Americans (Angwin et al 2016, Dieterich et al 2016, Chouldechova 2017).
The focus of fair machine learning has been almost entirely on mitigating
this kind of bias and ensuring that certain minority groups, often defined by
law, receive fair treatment. The AI community has seized upon traditional
statistical measures of classification error to detect bias, so that it can be
avoided when possible.

In a typical scenario, the machine makes yes–no decisions as to who receives
a certain benefit, such as a mortgage loan, a job interview, parole, and so
forth. A large training set is used to train the machine to select appropriate
individuals as reliably as possible, based on various features they possess. The
aim is to predict who will pay their mortgage, become a valued employee,
or avoid future crimes. These tasks conventionally use supervised learning
methods to train predictive models from labelled data. In particular, majority
of the literature on fair machine learning studies fairness in classification, and
we focus on this setup as well.

A fairness test compares decisions for a minority or protected group with
those for the remainder of the population. Four outcomes are possible for each
individual: a true positive (the machine correctly selects the individual for a
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benefit), a false positive (it incorrectly selects), a true negative (it correctly
rejects), and a false negative (it incorrectly rejects). We will refer to the
number of individuals in these four groups, respectively, as TP, FP, TN, and
FN. Various metrics involving these four statistics are compared between the
minority group and the rest of the population, each yielding a measure of
parity between the groups.

We will set ai = 1 when individual i should be selected, and ai = 0
otherwise. We let N be an index set for individuals in the protected group,
and N ′ for those in the remainder of the population. Rather than a vector u
of utilities distributed across individuals, we have a vector δ = (δ1, . . . , δn) of
individual 0–1 decisions, where δi = 1 indicates that individual i is selected.
We can view social welfare as a function W (δ) of these decisions rather than
a function W (u) of utilities. Of course, one could view δ as a simplified
representation of utilities in which each individual receives utility 0 or 1.
Typically, bounds are put on W (δ) rather than maximizing W (δ), thus leading
to an optimization problem (3) that maximizes some other objective subject
to these bounds.

Unfortunately, it is far from clear how the fairness of a decision vector δ
should be measured. There are a wide variety of classification error metrics,
many of which are pairwise incompatible, with no consensus on which is
most suitable for any given application (e.g. Kleinberg et al 2016, Friedler
et al 2016). In addition, the focus on classification error affords a rather
narrow perspective on the fairness problem, because the underlying concern
is generally distributive justice in a broader sense. Discrimination against a
minority group is normally seen as undesirable because it results in an unjust
distribution of utilities. Finally, there is no obvious criterion for which groups
should be designated as protected, unless one is content to recognize only those
sanctioned by law.

The AI community might well consider the option of training machines to
maximize a more comprehensive measure of social welfare, such as one of those
discussed in previous sections, to better align fairness concepts with social
well-being. We are already beginning to see some movement in this direction
(Heidari et al 2018, Corbett-Davies and Goel 2018, Heidari et al 2019, Hu
and Chen 2020). The classification vector δ can be viewed as a set of decision
variables on which utilities depend, perhaps as given by a utility function
u = U(δ), and social welfare assessed by a function W (u) as in model (2). In
the simplest case, one could set Ui(δi) = ciδi + di, where ci + di is the utility
experienced by individual i if selected, and di if not selected. Of course, legal
requirements may dictate that bounds are placed directly on one of the parity
measures.

In any event, the discussion below is restricted to fairness metrics W (δ)
defined directly in terms of the decision vector δ. We consider four of the
best known metrics: demographic parity, equalized odds, accuracy parity, and
predictive rate party. For brevity, we refer to individuals in the protected
group as minority individuals, and those in the remainder of the population as
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majority individuals. We do not discuss the Pigou-Dalton and Chateauneuf–
Moyes conditions in this context, because they do not appear to be meaningful
for 0–1 decision vectors.

We also omit some of the fairness metrics that have been proposed for
machine learning. Most of them are surveyed in Verma and Rubin (2018) and
are similar to those discussed here. Beyond these, the Matthews correlation
coefficient (Matthews 1975, Chicco and Jurman 2020) is often regarded as
the most comprehensive measure of classification accuracy, but it corresponds
to a complicated, nonconvex SWF that could be quite difficult to optimize.
Counterfactual fairness (Kusner et al 2017, Russell et al 2017) aims to select
minority applicants with the same probability that would apply if they had
been majority applicants. For example, financial irresponsibility of a mortgage
applicant, which cannot be directly observed, may correlate with residence in
a low-income neighborhood. This may lead to bias against minority applicants
whose residence in the neighborhood is due to social conditions that have
nothing to do with financial irresponsibility. Counterfactual fairness strives
to avoid this confounding of factors by constructing a causal network and
using Bayesian inference to isolate the effect of financial responsibility (Pearl
2000, Pearl et al 2016). It is unclear at this point how to incorporate this
scheme into an optimization model. Beyond fairness in classification and
supervised learning, recent research has also seen progress on fairness in
unsupervised learning (e.g., Abraham et al 2019, Deepak and Abraham 2020)
and reinforcement learning (e.g., Weng 2019, Siddique et al 2020). These
machine learning frameworks are generally difficult to interpret as optimization
models and tend to require customized fairness definitions.

10.1 Demographic parity

The simplest bias metric is based on demographic parity, also known as
proportional/statistical parity. It is achieved when the fraction of minority
individuals selected is the same as the fraction of majority individuals selected.
It is defined by comparing the ratio

(TP + FP)/(TP + FP + TN + FN)

across the two groups. The social welfare function is W (δ) = 1− |B(δ)|, where

B(δ) =
1

|N |
∑
i∈N

δi −
1

|N ′|
∑
i∈N ′

δi

Thus 0 ≤ W (δ) ≤ 1, and complete parity is obtained when W (δ) = 1. This
SWF is easily linearized and therefore gives rise to an MILP problem when
the problem constraints are linear:

min
δ,x,w

{
w
∣∣∣ − w ≤ B(δ) ≤ w, (δ,x) ∈ S, δ ∈ {0, 1}n

}
(19)
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Since Dwork et al (2012) proposed the use of demographic parity for fairness
in classification, it has been widely studied and applied. Existing classification
algorithms seeking demographic parity guarantees almost never impose the
criterion exactly via the formulation in (19) due to the integer variables δ.
Instead, one strategy is to use continuous relaxations of the exact definition
B(δ). For instance, Zafar et al (2017) define a convex proxy for demographic
parity by replacing the discrete variables δ with the continuous decision
boundaries of the trained model, and Olfat and Aswani (2018) substitute
the decision boundaries with covariance matrices to formulate a stronger but
non-convex proxy of demographic parity. Another strategy is to treat a given
classification algorithm as a black box and design separate pre-processing or
post-processing schemes to attain fairness guarantees. As an example, Agarwal
et al (2018) develop a systematic approach that reduces fair classification to
a sequence of cost-sensitive classification, and derive theoretical guarantees on
the generated classifier for a variety of fairness measures including demographic
parity, equalized odds and accuracy parity.

Despite its popularity, critics of demographic parity view the measure as
unsuitable for most practical purposes because it requires strict equality of
outcomes. For example, it discriminates against a minority group that happens
to be to be more qualified for loans than the majority on the average. It
requires that a minority individual receive a loan with no greater probability
than a majority individual.

10.2 Equalized odds

The equalized odds metric is based on two related but distinct criteria. One
is that the fraction of qualified minority persons selected is the same as the
fraction of qualified majority persons selected (Hardt et al 2016). The other
is that the fraction of unqualified minority persons selected is the same as the
fraction of unqualified majority persons selected (Zafar et al 2017). The former
is also known as equality of opportunity and is defined by comparing the ratio
TP/(TP + FN). It has the SWF W (δ) = 1 − |B(δ)| across the two groups,
where

B(δ) =

∑
i∈N aiδi∑
i∈N ai

−
∑
i∈N ′ aiδi∑
i∈N ′ ai

(20)

The latter criterion is based on the ratio FP/(FP + TN) and again has the
SWF W (δ) = 1− |B(δ)|, but with

B(δ) =

∑
i∈N (1− ai)δi∑
i∈N (1− ai)

−
∑
i∈N ′(1− ai)δi∑
i∈N ′(1− ai)

(21)

Both are easily linearized and give rise to the optimization problem (19).
Similar to the case of demographic parity, these exact formulations are rarely
used to train classification models. Hardt et al (2016) design post-processing
schemes to adjust the outcomes of unfair classifiers to attain equalized
odds guarantees. Zafar et al (2017) study an in-processing perspective and



Springer Nature 2021 LATEX template

Formulating Equity and Fairness 33

propose tractable proxies for (20) and (21) by replacing δ with continuous
approximations.

10.3 Accuracy parity

The two-sided evaluation in equalized odds can be obviated simply by
measuring the fraction of predictions that are accurate, which is the ratio

(TP + TN)/(TP + TN + FP + FN)

The SWF is W (u) = 1− |B(δ)|, where

B(δ) =
1

|N |
∑
i∈N

(
aiδi + (1− ai)(1− δi)

)
− 1

|N ′|
∑
i∈N ′

(
aiδi + (1− ai)(1− δi)

)
The optimization problem is again (19). Accuracy parity is less studied than
the previous two measures, perhaps because it does not distinguish between
true positives and true negatives. It is less often used in the design of fair
classifiers than as a tool to evaluate existing classifiers. For example, Berk
et al (2018) list accuracy parity as one of the meaningful fairness definitions
in criminal justice risk assessment.

10.4 Predictive rate parity

When one wishes to compare what fraction individuals selected from each
group should have been selected, the relevant measure is predictive rate parity,
defined as TP/(TP + FP). The SWF is W (δ) = |1−B(δ)|, with

B(δ) =

∑
i∈N aiδi∑

ı∈N δi
−
∑
i∈N ′ aiδi∑

ı∈N ′ δi

The optimization model is again (19), but it poses a difficult optimization
problem because variables occur in the denominator. A change of variables
similar to that in linear–fractional programming is unhelpful for two reasons.
One is that the two ratios in B(δ) give rise to two scaling factors t, t′ that create
a nonconvex bilinear term tt′ even in a linear constraint set. The other is that
rescaling destroys the integrality of the 0–1 variables δi. We therefore appear
to have an irreducibly difficult problem in nonlinear integer programming.

Predictive parity is primarily considered in risk assessment contexts, such
as, recidivism prediction (Dieterich et al 2016, Chouldechova 2017), child
maltreatment screening (Chouldechova et al 2018). In any case, it is unclear
why predictive rate parity would be preferable in a given application than one
of the measures discussed above. Accuracy parity, for example, would seem to
be at least as suitable, and it creates no computational difficulties.
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11 General Guidelines

There is no one best approach to formulating equity and fairness in an
optimization model. Fairness is a collection of concepts, many of them
rather vague, that can be found in popular culture, academic literature,
and legal settings. Nonetheless, the various formulations surveyed here have
characteristics that may be more or less suitable for the type of fairness one
wishes to achieve in a given context. We conclude with an overview of these
characteristics to assist one in exploring the equity landscape. We encourage
the reader to consult the more detailed discussion provided earlier, and perhaps
cited literature, before settling on a choice of model for a particular application.

Inequality metrics (Section 4) are of limited applicability because they take
no account of absolute welfare levels. Even if relative welfare is all that matters,
there may be an ethical difference between a distribution with extremes
at the bottom end and one with extremes at the top end, and inequality
measures do not distinguish these. Nonetheless, inequality measures can be
appropriate if they truly represent the only criterion of interest. The relative
range suits applications in which one simply wants to avoid extreme outliers.
The relative mean deviation measures dispersion across the entire distribution.
It is proportional to the Hoover index, which is the fraction of total utility
that must be redistributed to achieve perfect equality. The coefficient of
variation and Gini coefficient have the advantage that they are widely used,
and there is a general appreciation of what they say about a distribution. All of
these measures but the coefficient of variation have simple linear models. The
nonlinearity of the latter seems an unwarranted complication, unless something
about an application calls for this particular measure.

Fairness criteria can reflect concern for the disadvantaged as well as
inequality (Section 5). A famous example is the Rawlsian difference principle,
which gives rise to the maximin criterion. It is backed by a highly developed
social contract argument that can have considerable intuitive appeal. However,
the principle is intended only for the design of social institutions and can
have surprising implications when applied to welfare distribution in general.
For example, if improving the welfare of certain individuals is very expensive,
perhaps due to incurable disease, the maximin principle can require a massive
resource transfer that reduces everyone else to the same level of suffering.
Limiting the transfer does not help, because it reduces utility even further
and, worse, can allow some resources to go unused. The latter difficulty, but
only it, can be remedied by extending the maximin to a leximax principle. A
very different option is to use the McLoone index, a statistical criterion that
measures the extent to which those in the lower half of the utility distribution
are deprived. It appears in discussions of educational equality and other public
policy matters.

Pure fairness measures can be appropriate when there is no need to balance
fairness against the overall welfare of the population. However, practical
situations frequently call for both equity and efficiency to be explicitly
considered. One way to strive for both is simply to maximize a convex
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combination of the two (Section 6). Yet it is highly unclear how to adjust
their relative weights, particularly when they are measured in different units.
Efficiency is measured in units of utility, while most of the equity objectives
discussed so far are dimensionless.

Alpha fairness and Kalai-Smorodinsky bargaining offer more principled
solutions to the equity-efficiency trade-off (Section 7). The parameter α
in alpha fairness regulates the trade-off on a scale that ranges from a
purely utilitarian to a purely maximin criterion. Axiomatic and bargaining
justifications have been offered for this SWF, particularly for α = 1
(proportional fairness, or the Nash bargaining solution). However, these
justifications are perhaps less relevant to practice than the mere fact that one
can continuously adjust the trade-off to suit the occasion. Alpha fairness has,
in fact, seen fairly wide employment in engineering, despite the nonlinearity
of the SWF. Yet while α can be interpreted in terms of welfare-preserving
utility transfers, it is still unobvious how to justify any particular choice for
its value. Also, alpha fairness can assign the same social welfare to equality as
to extreme inequality (when α ≥ 1), although this becomes a practical issue
only for certain types of problem constraints.

The Kalai-Smorodinsky solution avoids this last issue entirely but poses
another. It is suitable for bargaining situations when the parties concerned
see equal relative concessions to be fair, as when buyer and seller negotiate
a price, or labor and management negotiate wages. However, it may be
unsuitable when some individuals have less utility potential due to physical
impairment or some other factor beyond their control. In such cases, fairness
may require special consideration for those who suffer misfortune, as in several
other schemes considered here. Also K-S bargaining offers no parameter to
adjust the equity-efficiency trade-off, and it violates both the Pigou-Dalton
and Chateauneuf-Moyes conditions.

Threshold SWFs (Section 8) combine utilitarian and maximin criteria using
a parameter ∆ that is easier to interpret in practice than the α of alpha fairness.
They also avoid the alpha fairness model’s anomaly of sometimes regarding
equality as ethically equivalent to extreme inequality. A utility-threshold model
is suitable when equity is the initial concern, but one does not wish to pay
too high a cost for fairness. This may occur, for example, in health-related or
politically sensitive contexts. The parameter ∆ is chosen so that disadvantaged
parties whose utility is with ∆ of the lowest are seen as deserving special
priority. The SWF satisfies the C-M condition and has a mixed integer model
that is readily solved in practice. An equity-threshold model is better suited for
situations in which efficiency is the initial concern, but one does not want to
create excessive inequality. This may be the situation in traffic management,
telecommunications, or disaster recovery. In this context, the parameter ∆ has
a somewhat different meaning: it is chosen in such a way that one wishes to
recognize no social benefit in improving the lot of well-off individuals whose
utility is already more than ∆ greater than the lowest, if the other utilities
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remain unchanged. The SWF satisfies both the and C-M conditions and has
an easily solved linear model.

Threshold models that combine efficiency with the maximin criterion
inherit the tendency of the latter to ignore the actual utility levels of the
disadvantaged other than the very worst-off. This may result in less sensitivity
to equity than desired, particularly when the utility of some individuals is
severely limited a priori by the constraint set. Two utility-threshold models
address this issue by combining efficiency with a leximax rather a maximin
criterion (Section 9). One assumes a predefined preference ordering for the
parties, which may be suitable for some situations, such as organ transplants.
However, the SWF is discontinuous, and it satisfies neither the nor the C–M
conditions. Another model makes no assumptions regarding preference, but
it maximizes a sequence of SWFs to balance efficiency and leximax fairness.
It uses the same parameter ∆ as maximin-based utility-threshold model. The
sequential SWFs are continuous, and they again satisfy the C–M condition and
have mixed integer models that are readily solved in practice. This approach
yielded markedly superior solutions, relative to a maximin-based threshold
model, in a healthcare problem where the utility of some patients is severely
limited by poor prognosis, and an earthquake shelter location problem in which
the utility of some neighborhoods is severely limited by their remoteness from
all of the potential shelter locations. At this writing, no equity-threshold models
have been developed to combine efficiency with leximax fairness, although it
appears that this could be done along similar lines.

Statistical bias measures (Section 10) are widely used in machine learning
to judge whether a protected subpopulation, such as a minority group, is
treated fairly. These measures do not attempt to take account of overall
welfare, and they assess distributive justice in a rather restricted sense. Rather
than evaluate a distribution of utilities across the population, they examine
how yes and no decisions are distributed between the protected and control
groups, as for example in the granting of mortgage loans, job interviews,
school admissions, or parole. Many of these statistical metrics are pairwise
incompatible, and there is no consensus as to which are appropriate for a
given application. Indeed, most were originally developed to measure predictive
accuracy, not fairness.

To take some examples, demographic parity compares the fraction of
individuals accepted in the two groups. It is often too strict because it fails
to recognize group differences in qualifications. Equalized odds compares the
fraction of qualified (or unqualified) individuals accepted. Accuracy parity
compares the fraction of individuals correctly classified (by acceptance or
rejection). Predictive rate parity compares the fraction of selected individuals
who are correctly selected. The computational tractability of minimizing bias
varies widely. The first three SWFs mentioned here have easy linear models.
The fourth poses an extremely difficult mixed integer/nonlinear programming
problem, which hardly seems worth solving, because there is no clear reason
for using this metric rather than another. The Matthews correlation coefficient,
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perhaps the most comprehensive bias measure, is even more challenging
computationally. Counterfactual fairness is a very different concept based on
causal networks, and its formulation as a social welfare maximization problem
is currently a research issue.

The standard approach to fairness in machine learning is to maximize
predictive accuracy subject to a constraint on bias. Yet this not only relies
on a narrow conception of utility (by identifying it with predictive accuracy),
but it provides no criterion for balancing utility and equity. Equity itself is
assessed only with respect to a protected group than across an entire utility
distribution. Indeed, it is unclear on what principle groups should be selected
for protection, unless one is content to consider only those mandated by law.
An alternative approach would be to maximize social welfare more broadly,
rather than predictive accuracy, when training a neural network or building
a rule base, perhaps using one of the SWFs surveyed here. The SWF could
reflect the utilitarian benefits of accuracy as well as other utilitarian and
equity-oriented factors.
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Appendix: Proofs

Proof of Theorem 1. Consider a utility distribution u = (u1, . . . , un) with
u1 ≤ · · · ≤ un, and let ũ = um be the median. There are three types of C-M
utility transfers, illustrated in Fig. 1: (a) ` < h ≤ m, (b) ` ≤ m < h, and
(c) m < ` < h. Since a C-M transfer does not reorder the utilities, the new
value of um is the median. If we let U =

∑m
i=1 ui, the McLoone indices before

and after the transfer are as in Table 1. It is easily checked that, in each case,
the transfer does not reduce the index. This follows directly from algebraic
manipulation in cases (a) and (b), and from the fact that U ≤ mum in case (c).

Proof of Theorem 2. Let t(u) denote the number of utilities in the fair region
for a given u. We can distinguish three types of C-M utility transfer, illustrated
in Fig. 2: (a) ` < h ≤ t(u), (b) ` ≤ t(u) < h, and (c) t(u) < ` < h. The
resulting utility gain by individuals 1, . . . `, and loss by individuals h, . . . , n,
are indicated in Table 2. It is clear on inspection of Fig. 2 that the gain is
at least ε in each case, and the loss never more than ε. The C-M condition is
therefore satisfied.

Proof of Theorem 3. Given a utility distribution u, let u′ be the result of
a Pigou-Dalton transfer of utility ε > 0 from uh to u`, where u` + ε ≤ uh − ε.
There are three cases to consider:

(a) u`, uh ≤ umin + ∆
(b) u`, uh > umin + ∆
(c) u` ≤ umin + ∆ and uh > umin + ∆

Case (c) breaks down into three subcases, where the following relations hold
as well:

(c1) u` + ε ≤ umin + ∆ and uh − ε > umin + ∆
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Fig. 1 Illustration of proof of Theorem 1.

Table 1 McLoone indices before and after a C-M transfer.

Case Before transfer After transfer

(a)
U

mum

U + (n−m)ε/(n− h+ 1)

m
[
um − ε/(n− h+ 1)

]
(b)

U

mum

U + ε

mUm

(c)
U

mum

U +mε/`

m
(
um + ε/`

)
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Fig. 2 Illustration of proof of Theorem 2.

Table 2 Verifying the Chateauneuf–Moyes condition for a utility-threshold SWF

Case Gain Loss

(a)
t(u)

`
ε > ε

n− t(u)

n− h+ 1
ε < ε

(b)
t(u)

`
ε > ε ε

(c) ε ε

Table 3 Verifying the Pigou-Dalton condition for an equity-threshold SWF

Case W (u) W (u′)

(a) (n− 2)∆ + u` + uh + U (n− 2)∆ + u` + uh + U

(b) n∆ + 2umin + U n∆ + 2umin + U

(c1) (n− 1)∆ + u` + umin + U (n− 1)∆ + u` + umin + ε+ U

(c2) (n− 1)∆ + u` + umin + U (n− 2)∆ + u` + uh + U

(c3) (n− 1)∆ + u` + umin + U n∆ + 2umin + U

(c2) u` + ε, uh − ε ≤ umin + ∆
(c3) u` + ε, uh − ε > umin + ∆

If we let

U =

n∑
i=1
i 6=`,h

min
{
ui −∆, umin

}
then W (u) and W (u′) are as shown in Table 3 for each case. It is clear on
inspection that W (u′) ≥ W (u) holds in cases (a), (b), and (c1). It holds in
case (c2) because uh − umin ≥ ∆ by hypothesis, and in case (c3) because
∆ ≥ u` − umin by hypothesis.

Proof of Theorem 4. We wish to show that for any C-M transfer from u
to u′, Wk(u′) ≥ Wk(u) for k = 2, . . . , n. This clearly holds when k > t(u),
because in this case Wk(u) is simply utilitarian. We therefore need only
consider the six cases illustrated in Fig. 3, in which k ≤ t(u). It is convenient
to write Wk(u) in the following form:

Wk(u) = t(u)u〈1〉 +

k∑
i=2

(n− i+ 1)u〈i〉 +

n∑
i=t(u)+1

(u〈i〉 −∆)
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The resulting gain by individuals 1, . . . `, and loss by individuals h, . . . , n, are
indicated in Table 4. In cases (b)–(f), it is clear on inspection of Fig. 3 that
the gain is more than ε in each case, and the loss never more than ε. In case
(a), we note first that the gain can be written

n− `− 1

2
− n− t(u)

`

To show that the loss is no greater than the gain, it suffices to show this when
h = `+ 1, since h ≥ `+ 1 and the loss is nonincreasing with respect to h. Thus
it suffices to show

n− `− 1

2
− n− t(u)

`
≥ 1

n− `

( k∑
i=`+1

(n− i+ 1) + n− t(u)
)

Since k ≤ t(u) and each term of the summation is at most n− `, it suffices to
show

n− `− 1

2
− n− t(u)

`
≥
(
t(u)− `

)
(n− `) + n− t(u)

n− `
Rearranging, we obtain

(
n− t(u)

)(1

`
+

1

n− `
− 1
)
≤ `+ 1

2
(1)

This inequality is clearly satisfied when the following is false:

1

`
+

1

n− `
≥ 1 (2)

We therefore assume (2) is true. Since (1) is clearly satisfied when ` = 1, we
suppose ` ≥ 2, in which case (2) implies n < `2/(` − 1). Since ` < h ≤ n, we
can state

`+ 1 ≤ n < `2

`− 1

or `2 − 1 ≤ n(` − 1) < `2. Since n and ` are positive integers, this implies
n = `+ 1, in which case (1) reduces to

`+ 1− t(u)

`
≤ `+ 1

2

This holds because t(u) ≥ `+ 1, and the theorem follows. �
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Fig. 3 Illustration of proof of Theorem 4.

Table 4 Verifying the Chateauneuf–Moyes condition for Wk(u), k ≥ 2

Case Gain Loss

(a)
1

`

(
t(u) +

∑̀
i=2

(n− i+ 1)
)
ε

1

n− h+ 1

( k∑
i=h

(n− i+ 1) + n− t(u)
)
ε

(b)
1

`

(
t(u) +

∑̀
i=2

(n− i+ 1)
)
ε ≥

t(u)

`
ε > ε

n− t(u)

n− h+ 1
ε < ε

(c)
1

`

(
t(u) +

k∑
i=2

(n− i+ 1)
)
ε ≥

t(u)

`
ε > ε

n− t(u)

n− h+ 1
ε < ε

(d)
1

`

(
t(u) +

∑̀
i=2

(n− i+ 1)
)
ε ≥

t(u)

`
ε > ε

n− h+ 1

n− h+ 1
ε = ε

(e)
1

`

(
t(u) +

k∑
i=2

(n− i+ 1)
)
ε ≥

t(u)

`
ε > ε

n− h+ 1

n− h+ 1
ε = ε

(f)
1

`

(
t(u) +

k∑
i=2

(n− i+ 1) + `− t(u)
)
ε ≥ ε

n− h+ 1

n− h+ 1
ε = ε
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