
Propagating separable equalities in an MDD

store

T. Hadzic1, J. N. Hooker2, and P. Tiedemann3

1 University College Cork
t.hadzic@4c.ucc.ie

2 Carnegie Mellon University
john@hooker.tepper.cmu.edu
3 IT University of Copenhagen

petert@itu.dk

Abstract. We present a propagator that achieves MDD consistency for
a separable equality over an MDD (multivalued decision diagram) store
in pseudo-polynomial time. We integrate the propagator into a constraint
solver based on an MDD store introduced in [1]. Our experiments show
that the new propagator provides substantial computational advantage
over propagation of two inequality constraints, and that the advantage
increases when the maximum width of the MDD store increases.

In [1] we proposed a width-limited multivalued decision diagram (MDD) as
a general constraint store for constraint programming. We demonstrated the
potential of MDD-based constraint solving by developing MDD-propagators for
alldiff and inequality constraints. In this paper, we describe an MDD-propagator
for the separable equality constraint that uses a pseudo-polynomial algorithm
to achieve MDD consistency. We show the computational advantage of the new
propagator over the existing approach of modeling equalities with two inequality
propagators.

Preliminaries. A constraint satisfaction problem is specified with a set of con-
straints C = {C1, . . . , Cm} on the variables X = {x1, . . . , xn} with respective
finite domains D1, . . . , Dn.

An MDD M is a tuple (V, r, E, var, D), where V is a set of vertices containing
the special terminal vertex 1 and a root r ∈ V , E ⊆ V ×V is a set of edges such
that (V, E) forms a directed acyclic graph with r as the source and 1 as the sink
for all maximal paths in the graph. Further, var : V → {1, . . . , n+1} is a labeling
of all nodes with a variable index, with var(1) = n + 1. D is a set containing an
edge domain Duv for each edge (u, v). We require that ∅ 6= Duv ⊆ D

var(u) for all
edges in E, and for convenience we take Duv = ∅ if (u, v) 6∈ E.

We work only with ordered MDDs. A total ordering < of the variables is
assumed, and all edges (u, v) with v 6= 1 respect the ordering; that is, var(u) <

var(v). For convenience, we assume that the variables in X are ordered according
to their indices. Ordered MDDs can be viewed as arranged in n layers of vertices,
with the vertices on each layer labeled with the same variable index. The width

k of the MDD is the size of the largest layer. While MDDs in general allow edges
to skip layers, for the simplicity of representation in this paper we consider only
MDDs without long edges; that is, for each (u, v) ∈ E, var(v) = var(u) + 1.
Thus if an r → 1 path is defined to be a path u1, . . . , un+1 in which u1 = r and
un+1 = 1, then each r → 1 path represents the subset of solutions

∏n

i=1(Duiui+1
).

Let C be a constraint on the variables {x1, . . . , xn}. For a given MDD M

we have a notion of consistency that generalizes well known generalized arc

consistency (GAC) [2].

Definition 1 (MDD consistency). A constraint C is MDD consistent with

respect to M if, for every edge (u, v) ∈ E with i = var(u) and every value

αi ∈ Duv, there exists a tuple (α1, . . . , αn) satisfying C that is represented by an

r → 1 path passing through (u, v).

1 A Propagator for the Separable Equality Constraint

Unlike a standard domain-store propagator, which is specified only by the way
it prunes infeasible values from a domain-store, an MDD-store propagator also
refines the MDD representing the store by adding new vertices and edges. We
develop such a propagator for the separable equality constraint, which for a set
of unary functions f1, . . . , fn and a constant c is defined as

f1(x1) + f2(x2) + . . . + fn(xn) = c (1)

1.1 Pruning

One simple way to perform pruning on the constraint (1) is to do so for the
two inequality constraints

∑n

i=1 fi(xi) ≤ c and
∑n

i=1 fi(xi) ≥ c. We can achieve
MDD consistency in linear time in the size of the MDD for each of these sep-
arately, using the inequality propagator described in [1]. Yet this ensures only
that each remaining edge is on a shortest path with cost at most c and on a
longest path with cost at least c. It therefore does not achieve MDD consistency
for the equality constraint.

To achieve MDD consistency we use the following procedure. In the first
phase, for each node u the algorithm computes the cost Ldown(u) of the cheapest
path and the cost Hdown(u) of the most expensive path leading from u to the
terminal. In the second phase it marks the edges in the MDD store that are on
at least one r → 1 path representing a solution of the constraint. In the final
phase all unmarked edges are removed from the MDD.

The pseudo-code for the algorithm Mark-Support implements the second
phase with a dynamic programming recursion and is shown in Figure 1. It is
initially invoked on the root r and the right-hand side c. When invoked on a
node u it searches for a path through the MDD from u with the given cost. For
each edge (u, u′) and α ∈ Du,u′ , the algorithm recursively checks if there exists a
path of cost c−fvar(u)(α) from u′ to the terminal, and the result of this query is
cached as cache(u′, c−fvar(u′)(α)). If the result is positive the edge is marked to

indicate that it must not be pruned. For each node u the previously computed
Ldown(u) and Hdown(u) values provide an early cutoff, because there can be no
path of cost c from u if the cheapest path from u is too expensive or the most
expensive path is too cheap. Note that if the width of the MDD store is 1 then
the algorithm is essentially the domain store filter of [3].

Mark-Support(u, cost)

1 if cache(u, cost) 6= UNKNOWN
2 then return cache(u, cost)
3 else if Ldown(u) > cost ∨Hdown(u) < cost

4 then cache(u, cost)← false

5 return false
6 else for (u, u′, α) ∈ E ×Du,u′

7 do if Mark-Support(u′, cost− fvar(u)(α))
8 then marked← marked ∪ (u, u′, α)
9 cache(u, cost)← true

10 return cache(u, cost)

Fig. 1. The algorithm shown above, initially invoked as Mark-Support(r, c) for a
constraint

∑

1≤i≤n
fi(xi) = c, ensures that an edge along with a value from its edge

domain is in marked iff there is a path through that edge, using the corresponding
value with cost exactly c.

Complexity The complexity of a propagation step is dominated by the execu-
tion of Mark-Support as the other phases can be done in linear time. Since
each call to Mark-Support only does constant work in addition to the recur-
sive calls, we can evaluate the time based on the number of recursive calls alone.
A call to Mark-Support on a node u only results in recursive calls if the given
cost has not been processed before for u. Let Lup(u) and Hup(u) be the cost
of the cheapest and most expensive path from the root to u. Then an upper
bounds on the number q(u) of distinct costs that any node u will be queried for
is q(u) = c−Lup(u)− (c−Hup(u)) + 1 = Hup(u)− Lup(u) + 1. Hence the total
time over all nodes can be bounded by

∑

u∈V

q(u)|Dvar(u)| = O

(

q(1) max
xi∈X

{|Di|}|V |

)

= O

(

q(1) max
xi∈X

{|Di|}nk

)

Note that this bound increases linearly with the width k. This is very pes-
simistic, however, as a larger width makes the store a more precise approximation
that allows fewer candidate solutions. This results in fewer paths to a given node,
and therefore in most cases fewer distinct costs of these paths, which translates
into fewer recursive calls per node. Thus a larger width can decrease the time re-
quired to execute Mark-Support. Additionally, a more refined store will allow
more edges to be pruned. Hence a larger width could be expected to reduce the

overall solution time. We verify this behavior in our empirical results in Section
2.

1.2 Refining

An MDD propagator refines the MDD through node splitting [1]. We first select
a node u ∈ V and create an isomorphic copy u′ ∈ V by copying every outgoing
edge (u, t) into (u′, t) along with all edge labels Du′,t = Du,t. We then copy
ingoing edges (s, u) into (s, u′) along with a subset Ds,u′ ⊆ Ds,u of edge labels
that are then removed from the original edges: Ds,u ← Ds,u \Ds,u′ . Fig. 2 shows
an example of a node split and subsequent propagation for an alldiff constraint.

(a)

{2}

u4

{1} {2}

{1}

{1,2}

u1 u2 u3

u5 u6

(b)

u5

∅

u4

{1}

∅
{1}

u6

u2u1 u3

{1}

{2}

{2}{2}

{1}

{2}

u
′
4

(c)

u4

{1}

u1 u2 u3

u5
u6

{2}

{1}

{2}

{2}{1}

u
′
4

Fig. 2. (a) Part of an MDD store representing a relaxation of a global alldiff, just before
splitting on the node u4. Note that while there are obvious inconsistencies between the
edge domains (such as label 1 in domains of (u1, u4) and (u4, u6)), we cannot remove
any value. (b) A new node u′

4 has been created and some of the edge domain values
to u4 have been transferred to u′

4. There are no labels on (u2, u
′
4) and (u3, u4), so the

edges need not be created. (c) After the split we can prune inconsistent values and as
a result remove edges (u4, u6) and (u′

4, u5).

Our splitting strategy selects a splitting node and a subset of incoming edges
to be redirected by heuristically estimating the quality of the resulting split. For
an equality constraint we try to increase the potential for subsequent pruning
by maximizing the shortest path L(u′) and minimizing the longest path H(u′)
passing through u′. In particular, we try to minimize the expected difference
H(u′)− L(u′). This splitting strategy is used with both the pseudo-polynomial
pruning and pruning based on two inequalities.

2 Empirical results

We randomly generated a number of problem instances involving 3 separable
equalities over 15 variables with a domain of size 3. We measured the time nec-
essary to find a solution using two inequality propagators and our equality prop-
agator. For each xi we randomly selected fi(xi) ∈ [−10000, 10000]. The results

are shown in Figure 3. We can observe that enforcing stronger MDD consistency
through an equality constraint consistently outperforms the weaker consistency
enforced by two inequalities. The computation time for two inequalities increases
with larger width, while reducing for the new equality propagator.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60

C
om

pu
ta

tio
n

tim
e

(m
s)

width

Effects of mdd consistency and width

2xInequality
MDD consistency

Fig. 3. The effect of MDD width (horizontal axis) on computation time (in ms, vertical
axis) when using (a) two inequality propagators to propagate the equality constraint
and (b) the MDD consistent equality propagator introduced in this paper.

3 Conclusion and future work

We presented a propagator for the MDD store that achieves MDD consistency
for a separable equality constraint in pseudo-polynomial time. From our empir-
ical results we observed that the extra overhead is worthwhile in practice. In
particular, the benefit increases as the width of the MDD store increases. In
future work we intend to develop an approximate propagation scheme based on
caching for small ranges of cost instead of a single precise cost.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Principles and Practice of Constraint Pro-
gramming - CP 2007. Volume LNCS 4741., Springer (2007) 118–132

2. van Hoeve, W.J., Katriel, I.: Global constraints. In Rossi, F., van Beek, P., Walsh,
T., eds.: Handbook of Constraint Programming. Foundations of Artificial Intelli-
gence. Elsevier Science Publishers, Amsterdam, The Netherlands (2006) 169–208

3. Trick, M.: A dynamic programming approach for consistency and propagation for
knapsack constraints. In: Proceedings of the Third International Workshop on In-
tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR-01). (2001) pages 113–124

