Planning and Scheduling by Logic-Based Benders Decomposition

John Hooker
Carnegie Mellon University

CORS/INFORMS, Banff, May 2004
Outline

- The problem
- MILP models
- Constraint programming model
- Logic-based Benders approach
 - Basic idea
 - Previous work
 - Min cost
 - Min makespan
 - Min tardiness
- Computational results
The Problem

• Allocate jobs (tasks) to machines (facilities).
• Schedule jobs on each machine.
 • Subject to release times & deadlines.
 • Machines may run at different speeds and incur different costs.
• Cumulative scheduling
 • Several jobs may run simultaneously on a machine.
 • But total resource consumption must never exceed limit.
Cumulative Scheduling

\[p_j = \text{processing time of job } j \]
\[c_j = \text{rate of resource consumption of job } j \]
\[C = \text{resources available} \]
\[r_j, d_j = \text{release time \\& deadline for job } j \]

Total resource consumption \(\leq C \) at all times.
Multiple-machine cumulative scheduling

\(p_{ij} = \) processing time of job \(j \) on machine \(i \)
\(c_{ij} = \) resource consumption of job \(j \) on machine \(i \)
\(C_i = \) resources available on machine \(i \)

Total resource consumption \(\leq C_i \) at all times.
Some Possible Objectives

Minimize cost = \(\sum_{ij} g_{y_j} \)

machine assigned to job j

Fixed cost of assigning job j to machine \(y_j \)

Minimize makespan = \(\max_{ij} \{ t_j + p_{y_j} \} \)

Start time of job j

Minimize tardiness = \(\sum_{ij} \left(t_j + p_{y_j} - d_j \right)^+ \)

\(\alpha^+ = \max\{0, \alpha\} \)

Due date for job j
Discrete Time MILP Model
(Minimize Cost)

\[\begin{align*}
\text{min} & \quad \sum_{ijt} g_{ij} x_{ijt} \\
\text{subject to} & \quad \sum_{it} x_{ijt} = 1, \quad \text{all } j \\
& \quad \sum_j \sum_{t'} c_{ij} x_{ijt'} \leq C_i, \quad \text{all } i, t \\
& \quad t - p_{ij} < t' \leq t \\
& \quad x_{ijt} = 0, \quad \text{all } j, t \text{ with } d_j - p_{ij} < t \\
& \quad x_{ijt} = 0, \quad \text{all } j, t \text{ with } t > N - p_{ij} + 1 \\
x_{ijt} & \in \{0,1\}
\end{align*}\]

Job \(j \) starts at one time on one machine

Jobs underway at time \(t \) consume \(\leq C_i \) in resources

Jobs observe time windows
Discrete Event MILP Model

Idea: Türkay & Grossmann

\[
\begin{align*}
\text{min} & \quad \sum_{ijk} g_{ijk} x_{ijk} \\
\text{subject to} & \quad \sum_{ik} x_{ijk} = 1, \quad \sum_{ik} y_{ijk} = 1, \quad \text{all } j \\
& \quad \sum_{ij} x_{ijk} + y_{ijk} = 1, \quad \text{all } k \\
& \quad \sum_{k} x_{ijk} = \sum_{k} y_{ijk}, \quad \text{all } i, j \\
& \quad t_{i,k-1} \leq t_{ik} \\
& \quad \text{Events in chronological order continued...}
\end{align*}
\]

= 1 if event \(k \) is start of job \(j \) on machine \(i \) \((k = 1, \ldots, 2N)\)

= 1 if event \(k \) is end of job

Each job is assigned to one machine and starts once and ends once

Start time of event \(k \) (disaggregated by machine)
Release date and deadline

Finish time of job j
(disaggregated by machine)

Definition of finish time

Resource limit

Calculation of resource consumption on machine i at time of each event

\begin{align*}
0 & \leq t_{ik}, \quad f_{ij} \leq d_j, \quad \text{all } i, j, k \\
t_{ik} + p_{ij} x_{ik} - M (1 - x_{ijk}) & \leq f_{ij} \leq t_{ik} + p_{ik} x_{ijk} + M (1 - x_{ijk}), \quad \text{all } i, j, k \\
t_{ik} - M (1 - y_{ijk}) & \leq f_{ij} \leq t_{ik} + M (1 - y_{ijk}), \quad \text{all } i, j, k \\
R_{ik} & \leq C_i, \quad \text{all } i, k \\
R_{i1}^{s} & = R_{i1}^{s}, \quad R_{ik}^{s} = \sum_j c_{ij} x_{ijk}, \quad R_{ik}^{f} = \sum_j c_{ij} y_{ijk}, \quad \text{all } i, k \\
R_{ik}^{s} + R_{i,k-1}^{f} - R_{ik}^{f} & = R_{ik}, \quad \text{all } i, k \\
x_{ijk}, y_{ijk} & \in \{0,1\}
\end{align*}
Constraint Programming Model

\[
\text{cumulative}\begin{pmatrix}
(t_1, \ldots, t_n) \\
(p_1, \ldots, p_n) \\
(c_1, \ldots, c_n) \\
C
\end{pmatrix}
\]

is equivalent to

\[
\sum_j c_j \leq C, \quad \forall t
\]

\[
t_j \leq t < t_j + p_{ij}
\]

Schedules jobs at times \(t_1, \ldots, t_n\) so as to observe resource constraint.

Edge-finding algorithms, etc., reduce domains of \(t_j\).
Minimize Cost: CP Model

\[
\begin{align*}
\text{min} & \quad \sum_j g_{y_j,j} \\
\text{subject to} \quad \text{cumulative} & \quad \left\{ \begin{array}{l}
(t_j \mid y_j = i) \\
(p_{ij} \mid y_j = i) \\
(c_{ij} \mid y_j = i) \\
C_i
\end{array} \right\}, \quad \text{all } i \\
r_j \leq t_j \leq d_j - p_{y_j,j}, \quad \text{all } j
\end{align*}
\]

\(y_j = \text{machine assigned to job } j\)

\(\text{start times of jobs assigned to machine } i\)

Observe time windows

Observe resource limit on each machine
This is how it looks in OPL Studio…

[Declarations]
DiscreteResource machine [\(i\) in Machines] (Limit [\(i\)]);
AlternativeResources mset(machine);
Activity \(sched[j]\) in Jobs;

minimize
sum(\(j\) in Jobs) cost[\(j\)]
subject to {
forall(\(j\) in Jobs) {
\(sched[j]\) requires(jobm[i,j].resource) mset;
forall(\(i\) in Machines)
activityHasSelectedResource(sched[j], mset, machine[j])
\(<=\) sched[j].duration = jobm[i,j].duration &
cost[\(j\)] = jobm[i,j].cost;
sched[j].start >= job[j].release;
sched[j].end <= job[j].deadline;
};
};
search {
assignAlternatives;
setTimes;
};

enforces cumulative
assigns jobs to machines
defines resource requirements
determines cost and
durations on the
assigned machine
time windows
invokes specialized search procedure
(needed for good performance)
Logic-Based Benders: Basic Idea

- **Decompose** problem into

 assignment + *resource-constrained scheduling*

 assign jobs to machines + *schedule jobs on each machine*

- Use logic-based Benders to link these.
- Solve: master problem with **MILP**

 -- good at resource allocation

 subproblem with **Constraint Programming**

 -- good at scheduling

- Generate Benders cuts from subproblem solutions, and add them to master problem.
Previous Work

1995 (JH & Yan) – Apply logic-based Benders to circuit verification.
 • Better than BDDs when circuit contains error.

 • Specialized Benders cuts must be designed for each problem class.
 • Branch-and-check proposed.

2001 (Jain & Grossmann) – Apply logic-based Benders to multiple-machine scheduling using CP/MILP.
 • Substantial speedup wrt CPLEX, ILOG Scheduler.
 • But… easy problem for Benders approach
2001 (Thorsteinsson) – Apply branch-and-check to CP/MILP.
 • 1-2 orders of magnitude speedup on multiple machine scheduling.

2002 (JH, Ottosson) – Apply logic-based Benders to SAT, IP.

Today – Apply logic-based Benders to resource-constrained planning/scheduling problems.
 • Multiple machines, parallel processing on each machine with resource constraint (cumulative scheduling)
 • Min cost, makespan, and tardiness.

Also:

2001 (Eremin & Wallace) - Classical Benders + CP
Yesterday (Cambazard & Hladik) – Real-time task allocation & scheduling
Minimize Cost: Logic-Based Benders

Master Problem: Assign jobs to machines

\[\min \sum_{i,j} g_{ij} x_{ij} \]
subject to
\[\sum_{i} x_{ij} = 1, \text{ all } j \]
\[\sum_{j} p_{ij} c_{ij} x_{ij} \leq C_i (d_\ell - r_k), \text{ all } i, \text{ all distinct } r_k, d_\ell \]

Relaxation of subproblem:
"Area" of jobs in time window \([r_k, d_\ell]\) must fit.
Subproblem: Schedule jobs assigned to each machine

Solve by constraint programming

\[
\begin{cases}
(t_j \mid \overline{x}_{ij} = 1) \\
(p_{ij} \mid \overline{x}_{ij} = 1) \\
(c_{ij} \mid \overline{x}_{ij} = 1) \\
C_i
\end{cases}
\]

\[
r_j \leq t_j \leq d_j
\]

Let \(J_{ih} \) = set of jobs assigned to machine \(i \) in iteration \(h \).

If subproblem \(i \) is infeasible, solution of subproblem dual is a proof that not all jobs in \(J_{ih} \) can be assigned to machine \(i \). This provides the basis for a (trivial) Benders cut.
Master Problem with Benders Cuts
Solve by MILP

\[
\begin{align*}
\text{min} & \quad \sum_{ij} c_{ij}x_{ij} \\
\text{subject to} & \quad \sum_i x_{ij} = 1, \quad \text{all } j \\
& \quad \sum_j p_{ij}r_{ij}x_{ij} \leq C_i (d_\ell - r_k), \quad \text{all } i, \text{ all distinct } r_k, d_\ell \\
& \quad r_j \leq r_k \\
& \quad d_j \leq d_\ell \\
& \quad \sum_{j \in J_{ih}} (1 - x_{ij}) \geq 1, \quad \text{all } i, h \\
x_{ij} & \in \{0,1\}
\end{align*}
\]
Important observation: Putting a **relaxation of subproblem** in the master problem is essential for success.

Min cost problem is particularly easy for logic-based decomposition:

<table>
<thead>
<tr>
<th></th>
<th>Min cost</th>
<th>Min makespan, tardiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective function</td>
<td>Computed in master problem, which yields tighter bounds for MILP</td>
<td>Available only thru Benders cuts.</td>
</tr>
<tr>
<td>Subproblem</td>
<td>Feasibility problem, simple Benders cuts</td>
<td>Optimization problem (harder for CP), more interesting cuts</td>
</tr>
<tr>
<td>Relaxation</td>
<td>Trivial</td>
<td>More interesting, nice duality with cuts</td>
</tr>
</tbody>
</table>
Minimize Makespan: Logic-Based Benders

Master Problem: Assign jobs to machines

\[
\begin{align*}
\text{min} & \quad m \\
\text{subject to} & \quad \sum_{i} x_{ij} = 1, \quad \text{all } j \\
& \quad m \geq \frac{1}{C_i} \sum_{j} p_{ij} c_{ij} x_{ij}, \quad \text{all } i \\
\end{align*}
\]

Benders cuts

Relaxation of subproblem: “Area” of jobs provides lower bound on makespan.
Subproblem: Schedule jobs assigned to each machine

Assume same time window for all jobs

Solve by constraint programming

\[\text{min} \quad m \]

subject to

\[
\begin{align*}
\{ & m \geq t_j + d_{ij}, \quad \text{all } j \\
& \text{cumulative } \begin{cases}
(t_j | \bar{x}_{ij} = 1) \\
(p_{ij} | \bar{x}_{ij} = 1) \\
(c_{ij} | \bar{x}_{ij} = 1)
\end{cases} \\
& 0 \leq t_j \leq d_0, \quad \text{all } j
\} \text{, all } i
\]

Let \(J_{ih} = \text{set of jobs assigned to machine } i \text{ in iteration } h. \)

We get a Benders cut even when subproblem is feasible.
Duality of Linear Relaxation and Linear Benders Cuts

Relaxation:
Lower bound on makespan

Benders cut:
Lower bounds on makespan as jobs are removed from machine

Minimum makespan for machine i in subproblem
Lemma.

Let \(m^* = \min \text{ makespan for an } n\text{-job problem on machine } i \)

\(m' = \min \text{ makespan when jobs } 1, \ldots, s \text{ are removed.} \)

Then

\[
m' \geq m^* - \sum_{j=1}^{s} p_{ij}
\]

Idea: Consider solution of problem with jobs 1, \ldots, s removed. Obtain a solution for the original problem by adding jobs 1, \ldots, s sequentially at the end (starting at time \(m' \)). Lemma holds whether this solution is feasible (completes before \(d_0 \)) or infeasible.

Lemma is false when deadlines differ.
Master Problem: Assign jobs to machines
Solve by MILP

\[
\begin{align*}
\text{min} & \quad m \\
\text{subject to} & \quad \sum_i x_{ij} = 1, \quad \text{all } j \\
& \quad m \geq \frac{1}{C_i} \sum_j p_{ij} c_{ij} x_{ij}, \quad \text{all } i \\
& \quad m \geq m_{hi}^* - \sum_{j \in J_{ik}} (1-x_{ij}) p_{ij}, \quad \text{all } i, h \\
& \quad x_{ij} \in \{0,1\}
\end{align*}
\]

Relaxation
Benders cuts
Makespan on machine \(i\) in iteration \(h\)
Minimize Tardiness: Logic-Based Benders

\textit{Master Problem: Assign jobs to machines}

\[
\begin{align*}
\text{min} & \quad T \\
\text{s.t.} & \quad \sum_{i} x_{ij} = 1, \quad \text{all } j \\
& \text{relaxation of subproblem} \\
& \text{Benders cuts}
\end{align*}
\]
Relaxation of subproblem

Lemma. Consider a min tardiness problem that schedules jobs 1, ..., \(n \) on machine \(i \), where \(d_1 \leq ... \leq d_n \). The min tardiness \(T^* \) is bounded below by

\[
L = \sum_{k=1}^{n} L_k
\]

where

\[
L_k = \left(\frac{1}{C_i} \sum_{j=1}^{k} p_i \pi_i(j) c_i \pi_i(j) - d_k \right)^+
\]

and \(\pi \) is a permutation of 1, ..., \(n \) such that

\[
p_{\pi_i(1)} c_{\pi_i(1)} \leq \cdots \leq p_{\pi_i(n)} c_{\pi_i(n)}
\]
From the lemma, we can write the relaxation

\[T \geq \sum_{i} \sum_{k=1}^{n} T'_{ik} x_{ik} \]

where \(T'_{ik} \geq \frac{1}{C_i} \sum_{j=1}^{k} p_{i\pi_i(j)} c_{i\pi_i(j)} x_{i\pi_i(j)} - d_k \)

To linearize this, we write

\[T \geq \sum_{i} \sum_{k=1}^{n} T_{ik} \]

and \(T_{ik} \geq \frac{1}{C_i} \sum_{j=1}^{k} p_{i\pi_i(j)} c_{i\pi_i(j)} x_{i\pi_i(j)} - d_k - (1 - x_{ik}) M_{ik} \)

where \(T_{ik} \geq 0, \quad M_{ik} = \frac{1}{C_i} \sum_{j=1}^{k} p_{i\pi_i(j)} c_{i\pi_i(j)} - d_k \)
Benders cuts

Lemma.

Let $T^* = \min$ tardiness for an n-job problem on machine i
\[T' = \min \text{ tardiness when jobs 1,\ldots,s are removed.} \]

Then
\[T' \geq T^* - n \sum_{j=1}^{s} p_{ij} \]

Idea: Consider solution of problem with jobs 1,\ldots,s removed. Obtain a feasible solution for the original problem by adding jobs 1,\ldots,s sequentially at the beginning and pushing the other jobs forward.
From the lemma, we have for each iteration h the Benders cut

$$T \geq \sum_{i} T_{hi}$$

$$T_{hi} \geq T_{hi}^* - |J_{hi}| \sum_{j \in J_{hi}} (1 - x_{ij}) p_{ij}, \quad \text{all } i$$

$$T_{hi} \geq 0$$

Min tardiness on machine i in subproblem
Computational Results

• Random problems on 2, 3, 4 machines.
• Machines run at different speeds.
• All jobs have same time windows.
• Tardiness problems: still in progress.
• Implement with OPL Studio
 • CPLEX for MILP
 • ILOG Scheduler for CP
Min cost, 2 machines

Computation time in seconds
Average of 5 instances shown

<table>
<thead>
<tr>
<th>Jobs</th>
<th>MILP*</th>
<th>CP</th>
<th>Benders</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.9</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>12</td>
<td>199</td>
<td>2.2</td>
<td>0.06</td>
</tr>
<tr>
<td>14</td>
<td>1441</td>
<td>79</td>
<td>0.04</td>
</tr>
<tr>
<td>16</td>
<td>3604+</td>
<td>1511</td>
<td>1.1</td>
</tr>
<tr>
<td>18</td>
<td>7200+</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

*Discrete time model only. Discrete event model very hard to solve.
+ At least one problem in the 5 exceeded 7200 sec (2 hours)
Min cost, 3 machines

Computation time in seconds
Average of 5 instances shown

<table>
<thead>
<tr>
<th>Jobs</th>
<th>MILP*</th>
<th>CP</th>
<th>Benders</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.13</td>
<td>0.37</td>
</tr>
<tr>
<td>12</td>
<td>797</td>
<td>2.6</td>
<td>0.55</td>
</tr>
<tr>
<td>14</td>
<td>114</td>
<td>35</td>
<td>0.34</td>
</tr>
<tr>
<td>16</td>
<td>678*</td>
<td>1929</td>
<td>4.5</td>
</tr>
<tr>
<td>18</td>
<td>7200+</td>
<td></td>
<td>14.6</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>

*CPLEX ran out of memory on 1 or more problems.

+ At least one problem in the 5 exceeded 7200 sec (2 hours)
Min cost, 4 machines

Computation time in seconds
Average of 5 instances shown

<table>
<thead>
<tr>
<th>Jobs</th>
<th>MILP*</th>
<th>CP</th>
<th>Benders</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.0</td>
<td>0.10</td>
<td>0.6</td>
</tr>
<tr>
<td>12</td>
<td>7.2</td>
<td>1.4</td>
<td>4.0</td>
</tr>
<tr>
<td>14</td>
<td>158</td>
<td>72</td>
<td>2.8</td>
</tr>
<tr>
<td>16</td>
<td>906*</td>
<td>344</td>
<td>0.8</td>
</tr>
<tr>
<td>18</td>
<td>6343+</td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>114</td>
<td></td>
</tr>
</tbody>
</table>

*Cplex ran out of memory on 1 or more problems.

+ At least one problem in the 5 exceeded 7200 sec (2 hours)
Min makespan, 2 machines

Average (sec) of 5 instances shown

<table>
<thead>
<tr>
<th>Jobs</th>
<th>CP</th>
<th>Benders</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.8</td>
<td>0.08</td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>14</td>
<td>299</td>
<td>7.8</td>
</tr>
<tr>
<td>16</td>
<td>3737</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>7200+</td>
<td>461</td>
</tr>
</tbody>
</table>

+ At least one problem in the 5 exceeded 7200 sec (2 hours)
Min makespan, 3 machines

Average (sec) of 5 instances shown

<table>
<thead>
<tr>
<th>Jobs</th>
<th>CP</th>
<th>Benders</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.06</td>
</tr>
<tr>
<td>12</td>
<td>7.5</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>981</td>
<td>0.7</td>
</tr>
<tr>
<td>16</td>
<td>4414</td>
<td>6.5</td>
</tr>
<tr>
<td>18</td>
<td>7200+</td>
<td>13.3</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1509</td>
</tr>
</tbody>
</table>

+ At least one problem in the 5 exceeded 7200 sec (2 hours)
Min makespan, 4 machines
Average (sec) of 5 instances shown

<table>
<thead>
<tr>
<th>Jobs</th>
<th>CP</th>
<th>Benders</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>12</td>
<td>1.9</td>
<td>0.09</td>
</tr>
<tr>
<td>14</td>
<td>524</td>
<td>0.8</td>
</tr>
<tr>
<td>16</td>
<td>3898</td>
<td>0.9</td>
</tr>
<tr>
<td>18</td>
<td>7200+</td>
<td>13.9</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>472</td>
</tr>
</tbody>
</table>

+ At least one problem in the 5 exceeded 7200 sec (2 hours)
Remarks

- Scheduling subproblem dominates as number of jobs per machine increases.

- Scheduling tends to be easier with precedence and other side constraints
Min cost & makespan, 2 machines

With precedence constraints

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Min cost sec</th>
<th>Min makespan sec</th>
<th>Min makespan value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.02</td>
<td>0.2</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>0.05</td>
<td>0.3</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>0.5</td>
<td>1.6</td>
<td>27</td>
</tr>
<tr>
<td>18</td>
<td>0.02</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>0.9</td>
<td>0.7</td>
<td>37</td>
</tr>
<tr>
<td>22</td>
<td>0.7</td>
<td>600*</td>
<td>26-27</td>
</tr>
<tr>
<td>24</td>
<td>7.7</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>26</td>
<td>2.1</td>
<td>442</td>
<td>37</td>
</tr>
<tr>
<td>28</td>
<td>21</td>
<td>600*</td>
<td>35-37</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
<td>600*</td>
<td>50-53</td>
</tr>
</tbody>
</table>

Terminated at 600 sec
<table>
<thead>
<tr>
<th>Jobs</th>
<th>Min cost</th>
<th>Min makespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>15</td>
<td>0.7</td>
<td>1.6</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>25</td>
<td>2.9</td>
<td>213</td>
</tr>
<tr>
<td>30</td>
<td>4.8</td>
<td>2075</td>
</tr>
<tr>
<td>35</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>976</td>
<td></td>
</tr>
</tbody>
</table>
Future Research

• Implement branch-and-check for Benders problem.

• Exploit dual information from the subproblem solution process.

• Explore other problem classes.
 • Min makespan with different time windows
 • Vehicle routing
 • Sequence-dependence setup times
 • Integrated long-term and short-term planning/scheduling