Assessing Group Fairness with Social Welfare Optimization Part 2

John Hooker

Carnegie Mellon University

Joint work with

Violet (Xinying) Chen

Stevens Institute of Technology

Derek Leben Carnegie Mellon University

ISAIM 2024

• Recall the **alpha fairness** SWF:

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

where u_i is the utility allocated to individual i

- Utilitarian when $\alpha = 0$, maximin when $\alpha \rightarrow \infty$
- **Proportional fairness** (Nash bargaining solution) when $\alpha = 1$
- To achieve alpha fairness:

Maximize $W_{\alpha}(\boldsymbol{u})$ subject to resource constraints.

• Alpha fair selection

Let $x_i = 1$ if individual *i* is selected, 0 otherwise. Then $u_i = a_i x_i + b_i$, where $a_i =$ **selection benefit** $b_i =$ base utility.

Now

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} (a_{i}x_{i}+b_{i})^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(a_{i}x_{i}+b_{i}) & \text{for } \alpha = 1 \end{cases}$$

We want to maximize $W_{\alpha}(\boldsymbol{u})$ subject to $x_i \in \{0, 1\}$ and

• A simple solution algorithm using algebraic trick

If
$$\alpha \neq 1$$
, we have

$$W_{\alpha}(\boldsymbol{u}) = \boxed{\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}}_{i} + \frac{1}{1-\alpha} \sum_{i} \left((a_{i}x_{i} + b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right)$$
Constant term

• A simple solution algorithm using algebraic trick

If $\alpha \neq 1$, we have

$$W_{\alpha}(\boldsymbol{u}) = \frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha} + \left| \frac{1}{1-\alpha} \sum_{i} \left((a_{i}x_{i} + b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right) \right|$$

So we can maximize

$$\sum_{i|x_i=1}^{n} \frac{1}{1-\alpha} \left((a_i + b_i)^{1-\alpha} - b_i^{1-\alpha} \right) = \sum_{i|x_i=1}^{n} \Delta_i(\alpha)$$

Welfare differential of individual *i*

• A simple solution algorithm using algebraic trick

If $\alpha \neq 1$, we have

$$W_{\alpha}(\boldsymbol{u}) = \frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha} + \left| \frac{1}{1-\alpha} \sum_{i} \left((a_{i}x_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right) \right|$$

So we can maximize
$$\sum_{i|x_{i}=1} \frac{1}{1-\alpha} \left((a_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right) = \sum_{i|x_{i}=1} \Delta_{i}(\alpha)$$

Welfare differential of individual *i*

... by selecting the *m* individuals with the largest welfare differentials $\Delta_i(\alpha)$.

Similarly (using logs) if $\alpha = 1$.

α = 0.7, Select 9 individuals

Majority group

a _i	∆ _/ (0.7)		
1.5	0.750	Ductort	
1.4	0.708	Protect	ea group
1.3	0.665	a _i	∆ , (0.7)
1.2	0.621	0.2	0.187
1.1	0.577	0.4	0.354
1.0	0.531	0.6	0.505
0.9	0.484	0.8	0.643
0.8	0.436	1.0	0.770
0.7	0.387		
0.6	0.336		

α = 0.7, Select 9 individuals

Majority group

a _i	∆ _/ (0.7)
1.5	0.750
1.4	0.708
1.3	0.665
1.2	0.621
1.1	0.577
1.0	0.531
0.9	0.484
0.8	0.436
0.7	0.387
0.6	0.336

Protected group			
a _i	∆ /(0.7)		
0.2	0.187		
0.4	0.354		
0.6	0.505		
0.8	0.643		
1.0	0.770		

9 individuals with highest welfare differentials

a _i	∆ ,(0.7)
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

 α = 0.7, Select 9 individuals

- Alpha fairness ($\alpha = 0.7$) corresponds to demographic parity.
 - 6 of 10 majority individuals selected
 - 3 of 5 protected individuals selected
 - 60% of both groups

9 individuals with highest welfare differentials

a _i	∆ _/ (0.7)
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

α = 0.7, Select 9 individuals

Majority group

Graphical interpretation

- We want a model that relates alpha fairness to the utility characteristics of the majority and projected groups.
 - ...while reducing the number of utility parameters
 - Selection benefits uniformly distributed in each group
 - Base utility is constant in each group

- We want a model that relates alpha fairness to the utility characteristics of the majority and projected groups.
 - ...while reducing the number of utility parameters

Let S = fraction of majority group selected s = fraction of protected group selected

Then the welfare differential of the last individual selected in the majority group is

$$\Delta_S(\alpha) = \begin{cases} \frac{1}{1-\alpha} \left(\left((1-S)A_{\max} + SA_{\min} + B \right)^{1-\alpha} - B^{1-\alpha} \right) & \text{if } \alpha \neq 1 \\ \log \left((1-S)A_{\max} + SA_{\min} + B \right) - \log(B) & \text{if } \alpha = 1 \end{cases}$$

and in the protected group is $\Delta'_s(\alpha)$, similarly defined.

If β = fraction of population that is in the protected group σ = fraction of population selected, then

$$(1-\beta)S + \beta s = \sigma,$$

which implies

$$s = s(S) = \frac{\sigma - (1 - \beta)S}{\beta}$$

and. . .

If β = fraction of population that is in the protected group σ = fraction of population selected, then

the min and max values of S are

$$S_{\min} = \max\left\{0, \ \frac{\sigma - \beta}{1 - \beta}\right\}, \ S_{\max} = \min\left\{1, \ \frac{\sigma}{1 - \beta}\right\}$$

Theorem. Selction rates (S, s) achieve alpha fairness for a given α if and only if

$$\begin{cases} (S,s) = \left(\min\left\{1,\frac{1}{1-\beta}\right\}, \frac{\sigma}{\beta}\left[1-\min\left\{1,\frac{1-\beta}{\sigma}\right\}\right]\right) & \text{in case(a)} \\ (S,s) = \left(\frac{\sigma}{1-\beta}\left[1-\min\left\{1,\frac{\beta}{\sigma}\right\}\right], \min\left\{1,\frac{\sigma}{\beta}\right\}\right) & \text{in case (b)} \\ \Delta_S(\alpha) = \Delta'_s(\alpha) & \text{in case (c)} \end{cases} \end{cases}$$

where the cases are

• Recall the 3 utility scenarios....

• Overall selection rate = 0.25

- Protected group has lower selection rates in Scenario 1 than in Scenario 2 due to higher utility cost of fairness in scenario 1.
- Protected group selection rate approaches 2/3 asymptotically because 1/3 of group is harmed by selection.

• Overall selection rate = 0.6

• Similar pattern, higher rates.

• Overall selection rate = 0.8

• Similar pattern, still higher rates.

• Overall selection rate = 0.25

- Parity achieved when majority & protected curves intersect.
- Parity corresponds to relatively low degree of fairness.
- Protected group in Scenario 2 has higher rate even with $\alpha = 0$.

• Overall selection rate = 0.6

- Parity in Scenario 2 now requires a slight degree of fairness.
- Scenario 3 parity requires large α due to high cost of fairness.

• Overall selection rate = 0.8

• Parity impossible in Scenario 3 because alpha fairness never calls for harmful selections.

• Parity generally corresponds to less than proportional fairness.

Equalized Odds

- Assume majority is 65% qualified, protected group 50% qualified.
- Overall selection rate = **0.25** < overall qualification rate of 0.6

- Even less fair than demographic parity.
- Sometimes viewed as easier to defend than demographic parity.

Equalized Odds

• Overall selection rate = **0.6** = overall qualification rate

- Only an accuracy maximizing solution (odds ratio = 1) yields equalized odds. Fairness not a factor.
- Nearly all odds ratios = 1 when selecting more individuals than are qualified.

Predictive Rate Parity

• Overall selection rate = **0.6** = overall qualification rate

- Higher predictive rates = **smaller** selection rates for protected group.
- Only an accuracy maximizing solution (pred rate = 1) yields predictive rate parity. Fairness not a factor.

Predictive Rate Parity

• Overall selection rate = **0.8** > overall qualification rate

- Nearly all predictive rates = 1 when selecting fewer individuals than are qualified.
- Predictive rate parity is a meaningful parity measure only when selecting more individuals than are qualified.

Conclusions

- Accounting for welfare
 - Alpha fairness (for suitable α) can result in **any** of the 3 types of parity, but usually when $\alpha < 1$.
 - So, parity is generally less fair than proportional fairness.

Conclusions

- Accounting for welfare
 - Alpha fairness (for suitable α) can result in **any** of the 3 types of parity, but usually when $\alpha < 1$.
 - So, parity is generally less fair than proportional fairness.
- Assessing parity metrics
 - Implications of alpha fairness depend heavily on how many individuals are selected relative to number qualified.
 - Equalized odds is a meaningful fairness measure only when selecting fewer individuals than are qualified.
 - Equalized odds is less fair (measured by α) than demographic parity.
 - **Predictive rate parity** is meaningful only when selecting **more** individuals than are qualified, which may be **unrealistic**.
 - Predictive rate parity may be relevant in the **parole** case (where lower recidivism corresponds to higher predictive rate) if one is willing to parole **unqualified** individuals.

Questions or comments?