Assessing Group Fairness with Social Welfare Optimization Part 2

John Hooker
Carnegie Mellon University

Joint work with
Violet (Xinying) Chen
Stevens Institute of Technology
Derek Leben
Carnegie Mellon University

ISAIM 2024

Alpha Fairness

- Recall the alpha fairness SWF:

$$
W_{\alpha}(\boldsymbol{u})= \begin{cases}\frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text { for } \alpha \geq 0, \alpha \neq 1 \\ \sum_{i} \log \left(u_{i}\right) & \text { for } \alpha=1\end{cases}
$$

where u_{i} is the utility allocated to individual i

- Utilitarian when $\alpha=0$, maximin when $\alpha \rightarrow \infty$
- Proportional fairness (Nash bargaining solution) when $\alpha=1$
- To achieve alpha fairness:

Maximize $W_{\alpha}(\boldsymbol{u})$ subject to resource constraints.

Alpha Fairness

- Alpha fair selection

Let $x_{i}=1$ if individual i is selected, 0 otherwise. Then $u_{i}=a_{i} x_{i}+b_{i}$, where $a_{i}=$ selection benefit $b_{i}=$ base utility .
Now

$$
W_{\alpha}(\boldsymbol{u})= \begin{cases}\frac{1}{1-\alpha} \sum_{i}\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha} & \text { for } \alpha \geq 0, \alpha \neq 1 \\ \sum_{i} \log \left(a_{i} x_{i}+b_{i}\right) & \text { for } \alpha=1\end{cases}
$$

We want to maximize $W_{\alpha}(\boldsymbol{u})$ subject to $x_{i} \in\{0,1\}$ and

$$
\sum_{i} x_{i}=m>\begin{gathered}
\text { Number of individuals } \\
\text { selected }
\end{gathered}
$$

Alpha Fairness

- A simple solution algorithm using algebraic trick

If $\alpha \neq 1$, we have

$$
W_{\alpha}(\boldsymbol{u})=\frac{\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}}{\text { ฟ }^{\text {Constant term }}}+\frac{1}{1-\alpha} \sum_{i}\left(\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)
$$

Alpha Fairness

- A simple solution algorithm using algebraic trick

If $\alpha \neq 1$, we have

$$
\begin{aligned}
& W_{\alpha}(\boldsymbol{u})=\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}+\frac{1}{1-\alpha} \sum_{i}\left(\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right) \\
& \text { So we can maximize }
\end{aligned}
$$

$$
\sum_{i \mid x_{i}=1} \frac{1}{1-\alpha}\left(\left(a_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)=\sum_{i \mid x_{i}=1} \Delta_{i}(\alpha)
$$

Welfare differential
of individual i

Alpha Fairness

- A simple solution algorithm using algebraic trick

If $\alpha \neq 1$, we have

$$
\begin{aligned}
& W_{\alpha}(\boldsymbol{u})=\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}+\frac{1}{1-\alpha} \sum_{i}\left(\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right) \\
& \text { So we can maximize }
\end{aligned}
$$

$$
\sum_{i \mid x_{i}=1} \frac{1}{1-\alpha}\left(\left(a_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)=\sum_{i \mid x_{i}=1} \Delta_{i}(\alpha)
$$

Welfare differential
of individual i
... by selecting the m individuals with the largest welfare differentials $\Delta_{i}(\alpha)$.

Similarly (using logs) if $\alpha=1$.

Alpha Fairness Example

$\alpha=0.7$, Select 9 individuals

Majority group

a_{i}	$\Delta_{l}(0.7)$	Protected group	
1.5	0.750		
1.4	0.708		
1.3	0.665	a_{i}	$\Delta_{l}(0.7)$
1.2	0.621	0.2	0.187
1.1	0.577	0.4	0.354
1.0	0.531	0.6	0.505
0.9	0.484	0.8	0.643
0.8	0.436	1.0	0.770
0.7	0.387		
0.6	0.336		

Alpha Fairness Example

$\alpha=0.7$, Select 9 individuals

Majority group

a_{i}	$\Delta_{l}(0.7)$
1.5	0.750
1.4	0.708
1.3	0.665
1.2	0.621
1.1	0.577
1.0	0.531
0.9	0.484
0.8	0.436
0.7	0.387
0.6	0.336

9 individuals with highest welfare differentials

a_{i}	$\Delta_{l}(0.7)$
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

Alpha Fairness Example

$$
\alpha=0.7, \text { Select } 9 \text { individuals }
$$

- Alpha fairness ($\alpha=0.7$) corresponds to demographic parity.
- 6 of 10 majority individuals selected
- 3 of 5 protected individuals selected
- 60% of both groups

9 individuals with highest welfare differentials

a_{i}	$\Delta_{l}(0.7)$
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

Alpha Fairness Example

$\alpha=0.7$, Select 9 individuals

Majority group

a_{i}	$\Delta_{l}(0.7)$	Protected group	
1.5	0.750		
1.4	0.708		
1.3	0.665	a_{i}	$\Delta_{l}(0.7)$
1.2	0.621	0.2	0.187
1.1	0.577	0.4	0.354
1.0	0.531	0.6	0.505
0.9	0.484	0.8	0.643
0.8	0.436	1.0	0.770
0.7	0.387		
0.6	0.336		

Graphical interpretation

Utility Model for 2 Groups

- We want a model that relates alpha fairness to the utility characteristics of the majority and projected groups.
- ...while reducing the number of utility parameters
- Selection benefits uniformly distributed in each group
- Base utility is constant in each group

Majority group	
Selection benefits	
$A_{\max }$	$A_{\min }$
Base utility $=B$	

Protected group
Selection benefits
$a_{\text {max }}$
Base utility $=b$

Utility Model for 2 Groups

- We want a model that relates alpha fairness to the utility characteristics of the majority and projected groups.
- ...while reducing the number of utility parameters

Let $S=$ fraction of majority group selected $s=$ fraction of protected group selected

Then the welfare differential of the last individual selected in the majority group is
$\Delta_{S}(\alpha)= \begin{cases}\frac{1}{1-\alpha}\left(\left((1-S) A_{\max }+S A_{\min }+B\right)^{1-\alpha}-B^{1-\alpha}\right) & \text { if } \alpha \neq 1 \\ \log \left((1-S) A_{\max }+S A_{\min }+B\right)-\log (B) & \text { if } \alpha=1\end{cases}$
and in the protected group is $\Delta_{s}^{\prime}(\alpha)$, similarly defined.

Utility Model for 2 Groups

If $\beta=$ fraction of population that is in the protected group $\sigma=$ fraction of population selected, then

$$
(1-\beta) S+\beta s=\sigma,
$$

which implies

$$
s=s(S)=\frac{\sigma-(1-\beta) S}{\beta}
$$

and. . .

Utility Model for 2 Groups

If $\beta=$ fraction of population that is in the protected group $\sigma=$ fraction of population selected, then
the min and max values of S are

$$
S_{\min }=\max \left\{0, \frac{\sigma-\beta}{1-\beta}\right\}, \quad S_{\max }=\min \left\{1, \frac{\sigma}{1-\beta}\right\}
$$

Utility Model for 2 Groups

Theorem. Selction rates (S, s) achieve alpha fairness for a given α if and only if

$$
\begin{cases}(S, s)=\left(\min \left\{1, \frac{1}{1-\beta}\right\}, \frac{\sigma}{\beta}\left[1-\min \left\{1, \frac{1-\beta}{\sigma}\right\}\right]\right) & \text { in case(a) } \\ (S, s)=\left(\frac{\sigma}{1-\beta}\left[1-\min \left\{1, \frac{\beta}{\sigma}\right\}\right], \min \left\{1, \frac{\sigma}{\beta}\right\}\right) & \text { in case (b) } \\ \Delta_{S}(\alpha)=\Delta_{s}^{\prime}(\alpha) & \text { in case (c) }\end{cases}
$$

where the cases are

Alpha-fair Selection Rates

- Recall the 3 utility scenarios....

	Scenario 1	Scenario 2	Scenario 3
Majority group	$\begin{array}{cc} 0.5 & 1.5 \\ A_{\min } & A_{\max } \end{array}$	$A_{\min }^{0.5} \stackrel{0.8}{\square} A_{\max }$	$A_{\min }^{0.5} \stackrel{1.0}{ } A_{\max }$
Protected group	$\stackrel{0.2}{0.2} \stackrel{1.0}{a_{\min }} a_{\max }$	$a_{\min }^{0.2} \quad 1.0 a_{\max }$	$a_{\min }^{-0.5} \stackrel{1.0}{a_{\max }}$
	Protected group benefits somewhat less from selection	Some protected individuals benefit more	Some protected individuals harmed by selection

Alpha-fair Selection Rates

- Overall selection rate $=0.25$

- Protected group has lower selection rates in Scenario 1 than in Scenario 2 due to higher utility cost of fairness in scenario 1.
- Protected group selection rate approaches $2 / 3$ asymptotically because $1 / 3$ of group is harmed by selection.

Alpha-fair Selection Rates

- Overall selection rate $=0.6$

- Similar pattern, higher rates.

Alpha-fair Selection Rates

- Overall selection rate $=0.8$

- Similar pattern, still higher rates.

Demographic Parity

- Overall selection rate $=0.25$

- Parity achieved when majority \& protected curves intersect.
- Parity corresponds to relatively low degree of fairness.
- Protected group in Scenario 2 has higher rate even with $\alpha=0$.

Demographic Parity

- Overall selection rate $=0.6$

- Parity in Scenario 2 now requires a slight degree of fairness.
- Scenario 3 parity requires large α due to high cost of fairness.

Demographic Parity

- Overall selection rate $=0.8$

- Parity impossible in Scenario 3 because alpha fairness never calls for harmful selections.

Demographic Parity

- Parity generally corresponds to less than proportional fairness.

Equalized Odds

- Assume majority is 65% qualified, protected group 50% qualified.
- Overall selection rate $=\mathbf{0 . 2 5}$ < overall qualification rate of 0.6

- Even less fair than demographic parity.
- Sometimes viewed as easier to defend than demographic parity.

Equalized Odds

- Overall selection rate $\mathbf{= 0 . 6}=$ overall qualification rate

- Only an accuracy maximizing solution (odds ratio = 1) yields equalized odds. Fairness not a factor.
- Nearly all odds ratios = 1 when selecting more individuals than are qualified.

Predictive Rate Parity

- Overall selection rate $\mathbf{= 0 . 6}=$ overall qualification rate

- Higher predictive rates = smaller selection rates for protected group.
- Only an accuracy maximizing solution (pred rate $=1$) yields predictive rate parity. Fairness not a factor.

Predictive Rate Parity

- Overall selection rate $=0.8>$ overall qualification rate

- Nearly all predictive rates $=1$ when selecting fewer individuals than are qualified.
- Predictive rate parity is a meaningful parity measure only when selecting more individuals than are qualified.

Conclusions

- Accounting for welfare
- Alpha fairness (for suitable α) can result in any of the 3 types of parity, but usually when $\alpha<1$.
- So, parity is generally less fair than proportional fairness.

Conclusions

- Accounting for welfare
- Alpha fairness (for suitable α) can result in any of the 3 types of parity, but usually when $\alpha<1$.
- So, parity is generally less fair than proportional fairness.
- Assessing parity metrics
- Implications of alpha fairness depend heavily on how many individuals are selected relative to number qualified.
- Equalized odds is a meaningful fairness measure only when selecting fewer individuals than are qualified.
- Equalized odds is less fair (measured by α) than demographic parity.
- Predictive rate parity is meaningful only when selecting more individuals than are qualified, which may be unrealistic.
- Predictive rate parity may be relevant in the parole case (where lower recidivism corresponds to higher predictive rate) if one is willing to parole unqualified individuals.

Questions or comments?

