Postoptimality Analysis with Multivalued Decision Diagrams

Tarik Hadzic
IT University of Copenhagen

John Hooker
Carnegie Mellon University

Cork Constraint Computation Centre
June 2008
Motivation

• Perform **postoptimality analysis** for 0-1 programming.

• **Problem**: It is hard to reason about the entire solution space.

• **Solution**: Represent the set of near-optimal solutions as a Binary Decision Diagram.
 – This was done in previous work (H&H 2006).
Motivation

• Today’s focus: **Scalability**
 – How large do BDDs grow with problem size?
 – How can we minimize the growth?

• We introduce **sound** BDDs.
 – Much **smaller** than the full BDD.
 – Provide **exact** postoptimality analysis for near-optimal solutions.
Types of Analysis

• Characterization of optimal or near-optimal solutions.
 – How much freedom is there to alter solution without much sacrifice in solution quality?

• Sensitivity analysis.
 – Which problem data significantly affect the solution?

• Online what-if queries.
 – What if I fix certain variables?
Basic Idea

• Use **reduced ordered binary decision diagrams (BDDs)** as a compact representation of the set of feasible or near-optimal solutions.
 – We can extract information from BDDs in real time.
 – Although exponentially large in the worst case, BDDs can be compact for important constraints.
Binary Decision Diagrams

- A reduced ordered BDD for a constraint set is a **compact representation of the branching tree** for a given branching order.
 - If both branches from a node lead to identical subtrees, remove the node.
 - If two subtrees are identical, superimpose them.
Branching tree for 0-1 inequality

\[2x_0 + 3x_1 + 5x_2 + 5x_3 \geq 7 \]

\[
x_0 = 1 \quad \quad \quad \quad \quad \quad \quad x_0 = 0
\]

\[
x_0 \quad x_0
\]

\[
x_1 \quad x_1
\]

\[
x_2 \quad x_2
\]

\[
x_3 \quad x_3
\]

\[
1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0
\]
Branching tree for 0-1 inequality

$$2x_0 + 3x_1 + 5x_2 + 5x_3 \geq 7$$

$x_0 = 1$
$x_0 = 0$

If an edge skips a variable, both assignments are allowed ($x_3 = 0$ and $x_3 = 1$)
In practice, BDDs are generated **bottom-up**.

First construct a BDD for every constraint and then conjoin the BDDs.

as generated by software (CLab, BuDDy)
• The BDD for a knapsack constraint can be surprisingly small…

The 0-1 inequality

\[
300x_0 + 300x_1 + 285x_2 + 285x_3 + 265x_4 + 265x_5 + 230x_6 + 230x_7 + 190x_8 + 200x_9 +
400x_{10} + 200x_{11} + 400x_{12} + 200x_{13} + 400x_{14} + 200x_{15} + 400x_{16} + 200x_{17} + 400x_{18} \geq 2701
\]

has 117,520 minimal feasible solutions

Or equivalently,

\[
300x_0 + 300x_1 + 285x_2 + 285x_3 + 265x_4 + 265x_5 + 230x_6 + 230x_7 + 190x_8 + 200x_9 +
400x_{10} + 200x_{11} + 400x_{12} + 200x_{13} + 400x_{14} + 200x_{15} + 400x_{16} + 200x_{17} + 400x_{18} \leq 2700
\]

has 117,520 minimal covers

But its reduced BDD has only 152 nodes…
• However, the BDD for multiple constraints can explode.
Optimization Over BDDs

• We want to solve a 0-1 programming model with an additively separable objective function

\[
\text{min} \sum_{j=1}^{n} c_j(x_j)
\]

\[g_i(x) \geq b_i, \quad i = 1, \ldots, m\]

\[x_j \in \{0,1\}, \quad j = 1, \ldots, n\]

Can be straightforwardly extended to general integer programming
Optimization Over BDDs

• We want to solve a 0-1 programming model with an additively separable objective function

\[
\min \sum_{j=1}^{n} c_{j}(x_{j})
\]

\[
g_{i}(x) \geq b_{i}, \quad i = 1, \ldots, m
\]

\[
x_{j} \in \{0,1\}, \quad j = 1, \ldots, n
\]

Can be straightforwardly extended to general integer programming

• If we represent the constraints \(g_{i}(x) \geq b_{i} \) as a BDD, then we can solve the problem by finding a shortest path in the BDD with appropriate edge lengths…
\[
\min 2x_0 - 3x_1 + 4x_2 + 6x_3 \quad \text{subject to} \quad 2x_0 + 3x_1 + 5x_2 + 5x_3 \geq 7
\]

Edge lengths reflect coefficients in the objective function.
$$\min \{2x_0 - 3x_1, 4x_2 + 6x_3\}$$ subject to $2x_0 + 3x_1 + 5x_2 + 5x_3 \geq 7$

2.1 + min $\{3x_1\}$

Edge lengths reflect coefficients in the objective function.
\[
\begin{align*}
\min & \ 2x_0 - 3x_1 + 4x_2 + 6x_3 \quad \text{subject to} \quad 2x_0 + 3x_1 + 5x_2 + 5x_3 \geq 7 \\
2 \cdot 1 + \min_{x_1 \in \{0,1\}} \{-3x_1\} & \rightarrow -1 \\
4 \cdot 1 + \min_{x_3 \in \{0,1\}} \{6x_3\} & \rightarrow 4 \\
\end{align*}
\]
Edge lengths reflect coefficients in the objective function.
Shortest path has length 1
Optimal solution:
\((x_0, x_1, x_2, x_3) = (0, 1, 1, 0)\)

We conduct postoptimality analysis by analyzing shortest and near-shortest paths

\[
\begin{align*}
\min & \quad 2x_0 - 3x_1 + 4x_2 + 6x_3 \\
\text{subject to} & \quad 2x_0 + 3x_1 + 5x_2 + 5x_3 \geq 7
\end{align*}
\]
Cost-Based Domain Analysis

• Consider again

\[
\min \sum_{j=1}^{n} c_j(x_j)
\]

\[g_i(x) \geq b_i, \quad i = 1,\ldots,m\]

\[x_j \in \{0,1\}, \quad j = 1,\ldots,n\]

• What values can \(x_j\) take without forcing the objective function value above \(c_{\text{opt}} + \Delta\)?
Example: Network Reliability

- Minimize cost subject to a bound on reliability
 - System of 5 bridges:

\[
R = R_1R_2 + (1 - R_2)R_3R_4 + (1 - R_1)R_2R_3R_4 + R_1(1 - R_2)(1 - R_3)R_4R_5 + (1 - R_1)R_2R_3(1 - R_4)R_5
\]
The problem:

$$\min \sum_j c_j x_j$$

Number of links j

$$R \geq R_{\text{min}}$$

$$R = R_1 R_2 + (1 - R_2) R_3 R_4 + (1 - R_1) R_2 R_3 R_4$$

$$+ R_1 (1 - R_2) (1 - R_3) R_4 R_5 + (1 - R_1) R_2 R_3 (1 - R_4) R_5$$

$$R_j = 1 - (1 - r_j)^{x_j}, \text{ all } j$$

$$x_j \in \{0, 1, 2, 3\}$$

Set $R_{\text{min}} = 60$ in all examples
Cost-based domain analysis

308 nodes in BDD
1.1 seconds to compile BDD

\(r = (0.9, 0.85, 0.8, 0.9, 0.95) \)
\(c = (25, 35, 40, 10, 60) \)

<table>
<thead>
<tr>
<th>(c_{opt} + \Delta)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50:</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>60:</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>85:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>90:</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>95:</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>100:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>120:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>125:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155:</td>
<td></td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>170:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>180:</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Domain analysis with respect to R

Same BDD as before

<table>
<thead>
<tr>
<th>R</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>99:</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>0,1,2,3</td>
</tr>
<tr>
<td>98:</td>
<td></td>
<td>0,3</td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td>95:</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 bridges
Cost-based domain analysis

1779 nodes in BDD
14.8 seconds to compile BDD

<table>
<thead>
<tr>
<th>$c_{opt} + \Delta$</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>72.2</td>
</tr>
<tr>
<td>11:</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>82.9</td>
</tr>
<tr>
<td>14:</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.6</td>
</tr>
<tr>
<td>16:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.6</td>
</tr>
<tr>
<td>18:</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95.2</td>
</tr>
<tr>
<td>19:</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97.2</td>
</tr>
<tr>
<td>23:</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.2</td>
</tr>
<tr>
<td>34:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.4</td>
</tr>
<tr>
<td>40:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.6</td>
</tr>
<tr>
<td>43:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.7</td>
</tr>
<tr>
<td>47:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.8</td>
</tr>
<tr>
<td>54:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.9</td>
</tr>
</tbody>
</table>
Domain analysis with respect to R

Same BDD as before

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
R & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
\hline
99.9 & 2,3 & 0,1,2,3 & 1,2,3 & 0,1,2,3 & 0,1,2,3 & 2,3 & 2,3 \\
99.8 & 1 & & & & & & 1 \\
99.5 & 0 & & 0 & & & 1 & \\
99.1 & & & & & & 0 & \\
97.2 & & & & & & & 0 \\
\hline
\end{array}
$$
12 bridges
Cost-based domain analysis

69,457 nodes in BDD
2933 seconds to compile BDD

<table>
<thead>
<tr>
<th>(c_{opt} + \Delta)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(x_8)</th>
<th>(x_9)</th>
<th>(x_{10})</th>
<th>(x_{11})</th>
<th>(x_{12})</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>225</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>235</td>
<td></td>
<td>99</td>
</tr>
</tbody>
</table>
Domain analysis with respect to R

Same BDD as before

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
<th>x_{11}</th>
<th>x_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>99:</td>
<td>0.3</td>
<td>0.3</td>
<td>1.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>1.3</td>
<td>0.3</td>
<td>0.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>98:</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>96:</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Reducing BDD Growth

- It suffices to use a BDD with the same near-optimal solutions as the original BDD. We assume $\Delta \leq \Delta_{\text{max}}$.

$B_{\Delta_{\text{max}}}$
Reducing BDD Growth

- It suffices to use a BDD with the same near-optimal solutions as the original BDD. We assume $\Delta \leq \Delta_{\text{max}}$.

$$\text{Sol} = \left\{ \begin{array}{l} \text{feasible} \\ \text{solutions} \end{array} \right\}$$

$$\text{Sol}_{\Delta_{\text{max}}} = \left\{ \begin{array}{l} \text{feasible solutions} \\ \text{with value } \leq c_{\text{opt}} + \Delta_{\text{max}} \end{array} \right\}$$

$$B = \text{original BDD}$$

$$B_{\Delta_{\text{max}}} = \text{BDD that represents } \text{Sol}_{\Delta_{\text{max}}}$$
Reducing BDD Growth

• It suffices to use a BDD with the same near-optimal solutions as the original BDD. We assume $\Delta \leq \Delta_{\text{max}}$.

$$\text{Sol} = \left\{ \text{feasible solutions} \right\}$$

$$\text{Sol}_{\Delta_{\text{max}}} = \left\{ \text{feasible solutions with value} \leq c_{\text{opt}} + \Delta_{\text{max}} \right\}$$

$$B = \text{original BDD}$$

$$B_{\Delta_{\text{max}}} = \text{represents Sol}_{\Delta_{\text{max}}}$$

• Unfortunately, $B_{\Delta_{\text{max}}}$ can be exponentially larger than B.
 – Even though it represents a smaller set of solutions.
Reducing BDD Growth

- It suffices to use a BDD with the same near-optimal solutions as the original BDD. We assume $\Delta \leq \Delta_{\text{max}}$.

\[
\text{Sol} = \left\{ \text{feasible solutions} \right\}
\]

\[
\text{Sol}_{\Delta_{\text{max}}} = \left\{ \text{feasible solutions with value } \leq c_{\text{opt}} + \Delta_{\text{max}} \right\}
\]

\[
B = \text{original BDD}
\]

\[
B_{\Delta_{\text{max}}} = \text{represents } \text{Sol}_{\Delta_{\text{max}}}
\]

- We will construct a smaller BDD $B'(\Delta_{\text{max}})$ that is sound: $B'(\Delta_{\text{max}})_{\Delta_{\text{max}}} = B_{\Delta_{\text{max}}}$
 - It has the same near optimal solutions as B.

\[
\text{Sol} \nonumber
\]
Reducing BDD Growth

\[\text{Value} > c_{opt} + \Delta_{\text{max}} \]

\[\text{Value} < c_{opt} + \Delta_{\text{max}} \]

\[\text{Sol} = \text{Solutions represented by } B \]
Reducing BDD Growth

\[\text{Sol} = \text{Solutions represented by } B \]

\[\text{Value} > c_{\text{opt}} + \Delta_{\text{max}} \]

\[\text{Value} < c_{\text{opt}} + \Delta_{\text{max}} \]

\[\text{Sol}_{\Delta_{\text{max}}} = \text{Solutions represented by } B_{\Delta_{\text{max}}} \]
Reducing BDD Growth

$Sol = \text{Solutions represented by } B$

Solutions represented by $B'(\Delta_{\text{max}})$

Value $> c_{\text{opt}} + \Delta_{\text{max}}$

Value $< c_{\text{opt}} + \Delta_{\text{max}}$
Pruning and Contracting

• We are unaware of a polytime exact method for constructing the **smallest sound** BDD.

• We use two heuristic methods for generating **small sound** BDDs during compilation:
 – Pruning edges
 – Contracting nodes
Pruning

• Delete all edges that belong only to paths longer than $c_{opt} + \Delta_{max}$.
Pruning

- Delete all edges that belong only to paths longer than $c_{opt} + \Delta_{max}$.

![Diagram showing the pruning process]
Pruning

• Delete all edges that belong only to paths longer than $c_{opt} + \Delta_{max}$.

If another edge now belongs only to long paths
Pruning

• Delete all edges that belong only to paths longer than $c_{opt} + \Delta_{max}$.

Delete it, too.
Pruning

• Delete all edges that belong only to paths longer than $c_{opt} + \Delta_{max}$.

And simplify the BDD.
Pruning

• Delete all edges that belong only to paths longer than $c_{\text{opt}} + \Delta_{\text{max}}$.

And simplify the BDD.
Contracting

• Remove a node if this creates no new paths shorter than $c_{opt} + \Delta_{max}$
Experimental Results

• We solve the 0-1 problem

\[
\min c x \\
A x \geq b \\
x \in \{0,1\}^n
\]

\[b_i = \alpha \sum_j A_{ij}\]

\(A_{ij}\) drawn uniformly from \([0,r]\)
Experimental Results

- 20 variables, 5 constraints
- $C_{opt} = 101$, $C_{max} = 588$

| Δ_{max} | $|B|$ | $|B_{\Delta_{max}}|$ | $|B'(\Delta_{max})|$ |
|----------------|-------|---------------------|---------------------|
| 0 | 8,566 | 20 | 5 |
| 40 | 742 | 524 |
| 80 | 4,388 | 3,456 |
| 120 | 11,217| 7,034 |
| 200 | 16,285| 8,563 |
| 240 | 13,557| 8,566 |
$B_{\Delta_{\text{max}}}$

Size of BDD

$|B'(\Delta_{\text{max}})|$

$|\text{Sol}| = 72,896$

$|\text{Sol}| = 449,102$

$|\text{Sol}| = 929,260$

$|\text{Sol}| = 556$

$\Delta_{\text{max}} / (c_{\text{max}} - c_{\text{opt}})$

20-5-50-3 $c_{\text{min}} = 101$, $c_{\text{max}} = 588$

Sol = 72,896

Sol = 449,102

Sol = 929,260

Sol = 556
Experimental Results

- 30 variables, 6 constraints
- $c_{\text{opt}} = 36$, $c_{\text{max}} = 812$

| Δ_{max} | $|B|$ | $|B_{\Delta_{\text{max}}}|$ | $|B'(\Delta_{\text{max}})|$ |
|-----------------------|----------|-----------------------------|-----------------------------|
| 0 | 925,610 | 30 | 10 |
| 50 | 3,428 | 2,006 |
| 150 | 226,683 | 262,364 |
| 200 | 674,285 | 568,863 |
| 250 | 1,295,465| 808,425 |
| 300 | 1,755,378| 905,602 |
Experimental Results

• 40 variables, 8 constraints
• $c_{opt} = 110, \ c_{max} = 1241$

| Δ_{max} | $|B|$ | $|B_{\Delta_{max}}|$ | $|B'(\Delta_{max})|$ |
|---------------|------|-----------------|-----------------|
| 0 | ? | 40 | 12 |
| 15 | 1,143| 40 | 402 |
| 35 | 3,003| 1,160 | 7,327 |
| 70 | 11,040| 7,327 | 223,008 |
| 100 | 404,713| 223,008 | 52,123 |
| 140 | ? | | |
Experimental Results

• 60 variables, 10 constraints
• $c_{\text{min}} = 67$, $c_{\text{max}} = 3179$

| Δ_{max} | $|B|$ | $|B_{\Delta_{\text{max}}}|$ | $|B'(\Delta_{\text{max}})|$ |
|----------------------|------|----------------|----------------|
| 0 | ? | 60 | 7 |
| 50 | 5,519| 1,814 |
| 100 | 111,401| 78,023 |
Experimental Results

Results when tightness α is gradually reduced
Experimental Results

• MIPLIB instances

• $\Delta_{\text{max}} = 0$ (BDD represents all optimal solutions)

| Instance | $|B|$ | $|B_{\Delta_{\text{max}}}|$ | $|B'_{\Delta_{\text{max}}}|$ |
|-----------|------|---------------------------|-----------------------------|
| lseu | ? | 99 | 19 |
| p0033 | 375 | 41 | 21 |
| p0201 | 310,420 | 737 | 84 |
| stein27 | 25,202 | 6,260 | 4,882 |
| stein45 | 5,102,257 | 1,765 | 1,176 |
Conclusions and Future Work

• Cost-bounded BDDs provide reasonable scalability for BDD-based postoptimality analysis in 0-1 linear programming.

Future work:

• Tests on nonlinear, nonconvex 0-1 problems
 – Nonlinearity, nonconvexity should not be a major factor.
• Extension to general integer problems.
 – Straightforward; a matter of implementation.
• Extension to MILP.
 – ??