Propagating Separable Equalities in an MDD Store

Tarik Hadzic
Cork Constraint Computation Centre
John Hooker
Carnegie Mellon University
Peter Tiedemann
Configit Software

INFORMS 2008
Constraint Programming

- **Strength** of CP – processes individual constraints.
 - Exploits problem substructure.

- **Weakness** of CP – processes individual constraints.
 - No global point of view.
 - Overlooks implications of combined constraints.

- Two compensating strategies:
 - Global constraints
 - Domain store relaxation
The domain store

- Stores the current variable domains
- Values that occur in some feasible solution
- Provides a global point of view.
- ...to some extent.
- Pools results of individual constraint processing.
- Basis for constraint propagation.
Advantages of domain store

• Provides **natural input** into filtering algorithms.
 – Filters start with current domains when processing a constraint.

• Guides **branching** (on variables) in a natural way.
 – Simply split the domain in the current domain store.
Disadvantages of domain store

- Transmits relatively **little information**.
- A **weak relaxation** of the problem.
 - Ignores interactions between variables.
 - Feasible set is simply a Cartesian product of domains.
- **Unbalanced tradeoff.**
 - Search trees **too large**.
 - **Too little processing** at nodes.
A stronger discrete relaxation

• Relaxed multivalued decision diagram can serve as a constraint store.
 – Generalization of binary decision diagram, used in circuit verification, configuration problems, etc.

• An MDD is a compact representation of a search tree for the problem.
 – Isomorphic subtrees are merged.
 – MDD is relaxed by limiting its width.
Advantages of MDD store

- A much **stronger relaxation** than domain store.
 - Strength of relaxation is **adjustable**, ranging from domain store to original problem.

- **Guides branching** in a natural way.
 - More guidance than domain store.

- **Justifies more processing** at search tree nodes.
 - Better integration of CP/IP.
Example problem

\[
\left(x_1 + x_3 = 4 \quad \text{and} \quad 3 \leq x_1 + x_2 \leq 5 \right) \lor (x_1, x_2, x_3) = (1,1,2)
\]

\[x_j \in \{1,2,3\}\]
Search tree

Infeasible

Feasible
Remove infeasible solutions
Merge isomorphic subtrees

\{1,2\}

\{1,2,3\}

\{2,3\}
Remove redundant edge
Reduced MDD
\[
\begin{align*}
(x_1 + x_3 &= 4) \lor (x_1 + x_2 \leq 5) \lor (x_1, x_2, x_3) = (1, 1, 2) \\
x_j \in \{1, 2, 3\}
\end{align*}
\]
Each path represents a cartesian product of solutions

\{(1) \times \{2,3\} \times \{3\}\}
Each path represents a cartesian product of solutions.

\[(2) \times \{1, 2, 3\} \times \{2\} \]
MDD Relaxation

Let's use relaxed MDD with max width of 2

Full MDD: 8 solutions

Relaxed MDD: 14 solutions
MDD Relaxation

MDD relaxation with width 1 is just the domain store.

Full MDD: 8 solutions
Relaxed MDD: 14 solutions
Domain store: $3 \times 3 \times 3 = 27$ solutions
Branching search using relaxed MDD

\[x_1 \in \{1,2,3\} \]

\[x_2 \in \{1,2,3\} \]

\[x_1 \in \{1\} \]

\[x_2 \in \{1,2,3\} \]

\[x_3 \]

\[u_1 \]

\[u_2 \]

\[u_3 \]

\[u_4 \]

\[u_5 \]
Branching search using relaxed MDD

\[x_1 \in \{1,2,3\} \]
\[x_2 \in \{1,2,3\} \]
\[x_3 \in \{1,2\} \]

\[x_1 \in \{1,2,3\} \]
\[x_2 \in \{1,2,3\} \]
\[x_3 \in \{1,2\} \]

\[\{1\} \]
\[\{2\} \]
\[\{3\} \]

Slide 20
Branching search using relaxed MDD

\[x_1 \in \{1,2,3\} \]
\[x_2 \in \{1,2,3\} \]
\[x_3 \in \{1,2\} \]

\[x_1 \in \{1\} \]
\[x_2 \in \{1\} \]
\[x_3 \in \{1\} \]
Branching search using relaxed MDD

And so forth.

Less branching than with domain store.
Propagation in MDDs

We can propagate a constraint in an MDD relaxation by edge domain filtering and refinement (node splitting).

We take care not to exceed max width.

Example:

We will propagate alldiff in an MDD relaxation of width 3.
Propagation in MDDs

Current MDD relaxation

Slide 24
Propagation in MDDs

First filter edge domains using alldiff
Propagation in MDDs

First filter edge domains using alldiff

Slide 26
To split u_5: identify equivalence classes of incoming edges.
These are equivalent for alldiff because they lead to the same set of feasible paths.

To split u_5: Identify equivalence classes of incoming edges
Propagation in MDDs

To split u_5:
Identify equivalence classes of incoming edges

These are equivalent for alldiff because they lead to the same set of feasible paths.

Easy to check equivalence for alldiff – all incoming paths use same values
To split u_5:
1. Identify equivalence classes of incoming edges.
2. Split u_5 to receive ≤ 3 equivalence classes.

Propagation in MDDs
Propagation in MDDs

Duplicate outgoing edges.
Propagation in MDDs

Duplicate outgoing edges.
Propagation in MDDs

Filter domains.
Filter domains.

Propagation in MDDs
Alldiff has now been propagated.

Propagation in MDDs

Hadzic, Hooker, O’Sullivan & Tiedemann, Approximate compilation of constraints into multivalued decision diagrams, 2008
Computational results
Problems

• Multiple alldiffs.
 – Three overlapping alldiffs.
 – 10-12 variables

\[
\text{alldiff}(x_1,\ldots,x_n)
\]

• Separable equalities.
 – Three nonlinear equalities in 15 variables.
 – Variable domains contain 3 values.

\[
\sum_{i} g_i(x_i) = \beta
\]
Results – Multiple alldiffs

- Conventional domain store – About a million search tree nodes.

- MDD constraint store – No backtracking.
 - Even for width as small as 5.

- Wider MDDs require fewer splits.
Number of branches + number of splits

Domain store

MDD-based

Max width of MDD
Computation time (milliseconds)

- Domain store
- MDD-based

Max width of MDD
• **MDDs are faster** for all but smallest widths.

• **Speed advantage of MDDs increases** with maximum width.
 – Up to a factor of about 30.
 – Within the range of widths studied.
Results – Separable Equalities

- MDD propagation cannot compete with MILP for solving separable equalities alone.
Results – Separable Equalities

• MDD propagation cannot compete with MILP for solving separable equalities alone.

• MDD propagation is designed for problems that are suitable for CP.
 – …but contain some separable equalities.
 – We want effective propagation of the equalities.
Results – Separable Equalities

• MDD propagation cannot compete with MILP for solving separable equalities alone.

• MDD propagation is designed for problems that are suitable for CP.
 - ...but contain some separable equalities.
 - We want effective propagation of the equalities.

• We compare MDD propagation for equalities with
 MDD propagation for 2 inequalities
 - i.e., replacing each equality with 2 inequalities
 - And propagating each inequality separately.
• **Filter edge domains with dynamic programming.**
 – Applied separately for each equality.
 – Use shortest and longest path lengths to the terminus to prune the calculation.
• Checking for edge equivalence is hard.
 – Two partial solutions

 \[(x_1, \ldots, x_k) = (a_1, \ldots, a_k)\]

 \[(x_1, \ldots, x_k) = (b_1, \ldots, b_k)\]

 are equivalent iff

 \[
 \sum_{i=1}^{k} g_i(a_i) + \sum_{i=k+1}^{n} g_i(x_i) = \beta
 \]

 has same solutions as

 \[
 \sum_{i=1}^{k} g_i(b_i) + \sum_{i=k+1}^{n} g_i(x_i) = \beta
 \]
• Checking for edge equivalence is hard.
 – Checking whether

\[\sum_{i=1}^{k} g_i(a_i) = \sum_{i=1}^{k} g_i(b_i) \]

is too strict
• Check for approximate equivalence.
 – This is constraint-specific.
 – Allows us to exploit special structure.
 – In the case of equalities, check whether

\[
\left| \sum_{i=1}^{k} g_i(a_i) - \sum_{i=1}^{k} g_i(b_i) \right| \leq \Delta
\]
• Actually, we did something else.
 – Split on the nodes u_i for which

$$\left| L_{\text{max}}(u_i) - L_{\text{min}}(u_i) \right| \leq \Delta$$

Longest path from u_i to terminus

Shortest path from u_i to terminus
• MDD propagation of an equality is much faster than propagation of 2 inequalities.
 – Both performance and advantage increase with MDD width.
Effects of MDD consistency and width

MDD propagation of inequalities

MDD propagation of equalities
Conclusions and research issues
Conclusions

- MDD store provides **substantial advantage** over constraint store in **multiple alldiff** problems.
 - **Wider** MDDs yield greater speedups (factor of 30).
 - **No backtracking**, even with narrow MDDs.

- MDD store is slower than MILP for **separable equalities**, but much faster than using inequality propagator.
Conclusions

• **Intensive processing** at search tree nodes can pay off when constraint store is richer.

• Ideally, use **integrated problem solving**
 – Continuous relaxation, cutting planes, etc.
 – MDD propagation, filtering, in parallel.
Research Issues

• Are MDDs superior for optimization problems?
 – Optimal solution = shortest path to terminus

• How to adjust width of relaxed MDD?
 – Can always set width = 1 if MDDs not useful.

• How to propagate other global constraints in an MDD-based constraint store?
 – Regular constraint (and special cases, pattern & stretch)
 – Sequence constraint (and special case, among)