Logic-based Formulation of Ethical Principles

John Hooker
Carnegie Mellon University

ICLP 2021
Some results represent joint work with

Thomas Donaldson
University of Pennsylvania

Tae Wan Kim
CMU
Ethics in AI

• There is rapidly growing interest in AI ethics
 • Mainly to avoid bias in AI-based decisions.
 • But also to incorporate general ethical principles into AI systems.
 • “Value alignment”
Ethics in AI

• There is rapidly growing interest in AI ethics
 • Mainly to avoid bias in AI-based decisions.
 • But also to incorporate general ethical principles into AI systems.
 • “Value alignment”

• Our goals:
 • Show that principles can be stated rigorously enough to allow logic-based formulation.
 • This requires some background in deontological ethics.
 • Show that logic-based formulation enables value alignment to incorporate the ethical principles.
Basic assumptions

• Acting for reasons
 • Freely chosen action is based on a rationale.

• Universality of reason
 • Justification is independent of the reasoner.
Basic assumptions

• Acting for reasons
 • *Freely chosen action is based on a rationale.*

• Universality of reason
 • *Justification is independent of the reasoner.*

• We deduce ethical principles from these assumptions.
 • *This is the deontological approach to ethics.*
 • *Deontology = What is required.*
 • Ethical principles represent what is required for the possibility of free action.
Basic premise: We always act for a reason.
 - *Every action has a rationale.*

Why?
 - *This is how we distinguish freely chosen action from mere behavior.*
 - An MRI machine can detect our decisions before we make them.
 - If decisions are determined by biological causes, how can they be freely chosen?
Acting for reasons

• Solution:
 • *Freely chosen actions have two kinds of explanation:*
 • A biological cause
 • A rationale provided by the agent
 • *For example:*
 • A hiccup has *only* a biological explanation. Not a freely chosen action.
 • Drinking water to stop hiccups has *2 explanations*: a biological cause and a rationale. A freely chosen action.
Acting for reasons

• Dual standpoint theory
 • *Originally proposed by Immanuel Kant.*
 • *Grundlegung zur Metaphysik der Sitten* (1785)
 • *Provides a basis for ethics.*
 • Ethical principles are necessary conditions for the logical coherence of an action’s rationale.
Universality of reason

• What is rational does not depend on who I am.
 • I don’t get to have my own logic.
 • In particular, if I view a reason as justifying an action for me, I must view it as justifying the same action for anyone to whom the reason applies.

• The assumption underlies science and all forms of rational inquiry.
 • Ethics assumes nothing more.
We sketch **deontological arguments** for three ethical principles.

- Based on assumptions just stated.
 - *Generalization principle*
 - *Autonomy principle*
 - *Utilitarian principle*

We show how to express the principles in **quantified modal logic**.

- *To allow application to value alignment.*
Generalization principle

• Example
• Suppose I steal a watch from a shop.
• I have 2 reasons:
 • *I want a new watch.*
 • *I won’t get caught.*
 • Security at the shop is lax.
Generalization principle

• Example

• Suppose I steal a watch from a shop.

• I have 2 reasons:
 • *I want a new watch.*
 • *I won’t get caught.*
 • Security at the shop is lax.

• These are not psychological causes or motivations.
 • *They are consciously adduced reasons for the theft.*
 • There may be other reasons, of course.
Example - Theft

• Due to universality of reason, I am making a decision for everyone:
 • *All who want a watch and think they won’t get caught should steal one.*
Example - Theft

• Due to universality of reason, I am making a decision for everyone:
 • *All who want a watch and think they won’t get caught should steal one.*

• But I know that if all do this, they will get caught.
 • *The shop will install security.*
 • *My reasons will no longer apply to me.*
Example - Theft

• Due to universality of reason, I am making a decision for everyone:
 • *All who want a watch and think they won’t get caught should steal one.*

• But I know that if all do this, they will get caught.
 • *The shop will install security.*
 • *My reasons will no longer apply to me.*

• I am not saying that all these people actually **will** steal watches.
 • *Only that if they did, my reasons would no longer apply.*
Example - Theft

• My reasons are **inconsistent** with the assumption that people will act on them.

• I am caught in a contradiction.
 • *I am deciding that these reasons justify theft for me.*
 • *But I am not deciding that these reasons justify theft for others.*
 • *I can’t have it both ways.*
Example - Theft

• My reasons are inconsistent with the assumption that people will act on them.

• I am caught in a contradiction.
 • I am deciding that these reasons justify theft for me.
 • But I am not deciding that these reasons justify theft for others.
 • I can’t have it both ways.

• More generally...
 • Universal theft merely for personal benefit would undermine the institution of property.
 • Purpose of theft is to benefit from property rights.
It should be rational for me to believe that the reasons for my action are consistent with the assumption that everyone to whom the same reasons apply acts the same way.

- Historically inspired by Kant’s Categorical Imperative, but different and more precise.
- Takes “rationality” as a primitive and unexplained notion, but this is true to some extent of all science.
What is wrong with cheating on an exam?

My reasons:

- I will get a better grade and therefore a better job.
- I can get away with it.

I know that these reasons apply to nearly all students.

- If they act accordingly, grades will be meaningless, or exams strictly proctored.
- This defeats one or both of my reasons.
- So, cheating for these reasons violates the generalization principle.
• Breaking an agreement normally violates the generalization principle.

• Reason:
 • Convenience or profit.

• These reasons apply to most agreements
 • If agreements were broken for mere convenience, it would be impossible to make agreements.
 • And therefore impossible to achieve one’s purposes by breaking them.
 • The whole point of having an agreement is that you keep it when you don’t want to keep it.
Example - Lying

• Lying for mere convenience violates the generalization principle.
 • *if the reason for lying assumes that people will believe the lie.*
 • *If everyone lied when convenient, no one would believe the lies.*
 • The possibility of **communication** presupposes a certain amount of credibility.
Example - Lying

• Lying can be generalizable, depending on the reasons.

• Popular “counterexample”
 • Similar to one posed in Kant’s day.
 • *Workers in an Amsterdam office building lied to Nazi police, to conceal whereabouts of Anne Frank and family.*
 • *This is generalizable.*
 • If everyone lied for this reason, it would still accomplish the purpose, perhaps even more effectively.
 • There is no need for police to believe the lies.
Scope of the rationale

• Scope = an agent’s necessary and jointly sufficient conditions for performing an act.
 • An ambulance driver uses the siren, but with no patient.
 • His reasons:
 • He is late picking up his kids at day care, because he misplaced his car keys.
 • The siren will allow him to arrive on time.
 • He can get away with it.
 • This is generalizable
 • These reasons seldom apply to an ambulance driver.
Scope of the rationale

• Scope = an agent’s necessary and jointly sufficient conditions for performing an act.
 • *An ambulance driver uses the siren, but with no patient.*
 • *His reasons:*
 • He is late picking up his kids at day care, because he misplaced his car keys.
 • The siren will allow him to arrive on time.
 • He can get away with it.
 • *This is generalizable*
 • These reasons seldom apply to an ambulance driver.
 • *But the scope is too narrow*
 • The details are not necessary.
 • The real reason is that it is important to be on time.
Action plans

• Since actions always have a rationale, we treat them as action plans.
 • If X, then do Y.
 • For example,
 • If I would like to have an item on display in a shop, and I can get away with stealing it, then I will steal it.

• An agent is a bundle of action plans.
 • ...that are executed when the antecedents are satisfied.
Logical formulation

- The first step is to formulate action plans as conditionals.

\[C_1(a) = \text{Agent } a \text{ wants an item on display in a shop.} \]
\[C_2(a) = \text{Agent } a \text{ can get away with stealing the item.} \]
\[A(a) = \text{Agent } a \text{ will steal the item.} \]

The action plan is: \((C_1(a) \land C_2(a)) \implies_a A(a) \)

\(\implies_a \) is not logical entailment but indicates that agent \(a \) regards \(C_1(a) \) and \(C_2(a) \) as justifying \(A(a) \).
Logical formulation

• Modal operators.

\(\Box_a S = \text{agent } a \text{ must assent to } S \text{ to be rational} \)
\(\Diamond_a S = \text{agent } a \text{ can be rational in assenting to } S \)

Thus \(\Diamond_a S \equiv \neg \Box_a \neg S \), as usual.

We will also say
\(\Box_a S = \text{agent } a \text{ is rationally constrained to believe } S \)
\(\Diamond_a S = \text{agent } a \text{ can rationally believe } S \)

The operators have different interpretations than in traditional alethic, epistemic and doxastic logics.

Note that we don’t have \(\Box_a S \rightarrow S \)
Logical formulation

• Possibility predicate

\[P(S) = S \text{ is possible} \]

Possibility is not a modal operator here.

We can regard this as physical (as opposed to logical) possibility.

It is not essential to be more precise at this point.
Logical formulation

• Let \(C(a) \implies_a A(a) \) be an action plan

 where \(C(a) \) is a conjunction of \(a \)'s reasons for \(A(a) \)

• The generalization principle is

\[
\diamond_a P \left(\forall x (C(x) \implies A(x)) \land C(a) \land A(a) \right)
\]

Agent \(a \) can rationally believe that it is possible to take action \(A \) when reasons \(C \) apply, and when all agents to whom reasons \(C \) apply take action \(A \).
Autonomy

• There is a fundamental obligation to respect autonomy.
 • *This rules out murder, most coercion, slavery, etc.*
 • *But autonomy must be carefully defined.*
Autonomy

• There is a fundamental obligation to respect autonomy.
 • *This rules out murder, most coercion, slavery, etc.*
 • *But autonomy must be carefully defined.*

• Autonomy is more than “self-law.”
 • *I act *autonomously* when I freely make up my own mind about what to do, based on *coherent reasons* I give for my decision*
 • An *agent* is a being that can act autonomously (sometimes called a “moral agent”).
 • Today’s “autonomous cars” are not autonomous.
Violation of autonomy

- Coercion violates autonomy if it interferes with an ethical action plan.
 - Example.
 - Action plan: “If I want to catch a bus, and the bus stop is across the street, and no cars are coming, the I will cross the street.”
 - If you pull me off the street when no cars are coming, this is a violation of my autonomy.
 - If you pull me out of the path of a car I fail to see, this is coercion but no violation of autonomy.
Autonomy principle

- My action plan is unethical if I am rationally constrained to believe it interferes with the ethical action plan of some other agent.
Autonomy principle

• I must be **rationally constrained** to believe there is a conflict of action plans.
 • *That is, it is irrational not to believe this.*
 • If someone falls into a maintenance hole I leave uncovered, this is **not** a violation of autonomy.
 • It is only possible/probable that someone will fall in (a violation of the **utilitarian principle**).
Autonomy principle

• I must be **rationally constrained** to believe there is a conflict of action plans.
 • *That is, it is irrational not to believe this.*
 • If someone falls into a maintenance hole I leave uncovered, this is **not** a violation of autonomy.
 • It is only possible/probable that someone will fall in (a violation of the *utilitarian principle*).
 • But suppose it has a cover that will **collapse** when someone steps on it and is on 5th Ave NYC (a booby trap).
 • I am **rationally constrained** to believe **someone** will fall in.
 • I violate autonomy.

36
Coercion does not violate autonomy if there is informed consent.

Suppose I attend a concert with strict rules against recording the performance.

- Ushers compel me to leave when I record it anyway.
- This is coercion but no violation of my autonomy.
- I gave informed consent to this possibility.
- The consent is part of the antecedent of my action plan.
- “If I want to record the performance and am not kicked out for doing so, then I will record it.”
Autonomy principle

• Interference with an unethical action plan is not a violation of autonomy.
 • An unethical action plan is not a freely chosen action, because it has no coherent rationale.
 • There is no denial of agency.
 • You can defend yourself, because an attack on you is unethical.
Interference with an unethical action plan is not a violation of autonomy.

- An unethical action plan is not a freely chosen action, because it has no coherent rationale.
- There is no denial of agency.
 - You can defend yourself, because an attack on you is unethical.

Is this a circular reference to “unethical”?

- We define “unethical” recursively.
- An action plan is unethical if it violates the generalization of utilitarian principle, or interferes with an ethical action plan.
Logical formulation

Agent a’s action plan $C(a) \Rightarrow_a A(a)$ interferes with agent b’s action plan $C'(b) \Rightarrow_b A'(b)$ when

$$\Box_a \neg P(A(a) \land A'(b)) \land \Diamond_a P(C'(a) \land C'(b))$$

Agent a is rationally constrained to believe that the two actions are incompatible, and can rationally believe that that the reasons for the two actions can both apply.
Logical formulation

• Example

\[C_1(b) = \text{agent } b \text{ wants to catch a bus} \]
\[C_2(b) = \text{there is a bus stop across the street from } b \]
\[C_3(b) = \text{cars are approaching } b \]
\[C_4(b) = \text{agent } b \text{ is about to cross the street} \]
\[A_1(b) = \text{agent } b \text{ will cross the street} \]
\[A_2(a, b) = \text{agent } a \text{ will pull } b \text{ off the street} \]

No cars coming

Agent a’s plan: \(\left(\neg C_3(b) \land C_4(b) \right) \Rightarrow_a A_2(a, b) \)

Agent b’s plan: \(\left(C_1(b) \land C_2(b) \land \neg C_3(b) \right) \Rightarrow_b A_1(b) \)

Agent a’s plan interferes with agent b’s plan:

\[\square_a \neg P\left(A_1(b) \land A_2(a, b) \right) \land \]
\[\Diamond_a P\left(C_1(b) \land C_2(b) \land \neg C_3(b) \land C_4(b) \right) \]

True due to coercion
Logical formulation

• Example

\[C_1(b) = \text{agent } b \text{ wants to catch a bus} \]
\[C_2(b) = \text{there is a bus stop across the street from } b \]
\[C_3(b) = \text{cars are approaching } b \]
\[C_4(b) = \text{agent } b \text{ is about to cross the street} \]
\[A_1(b) = \text{agent } b \text{ will cross the street} \]
\[A_2(a, b) = \text{agent } a \text{ will pull } b \text{ off the street} \]

No cars coming

Agent a’s plan: \(\left(\neg C_3(b) \land C_4(b) \right) \Rightarrow_a A_2(a, b) \)

Agent b’s plan: \(C_1(b) \land C_2(b) \land \neg C_3(b) \Rightarrow_b A_1(b) \)

Agent a’s plan interferes with agent b’s plan:

\[\square_a \neg P \left(A_1(b) \land A_2(a, b) \right) \land \Diamond_a P \left(C_1(b) \land C_2(b) \land \neg C_3(b) \land C_4(b) \right) \]

True due to mutually consistent reasons
Logical formulation

• Example

\[C_1(b) = \text{agent } b \text{ wants to catch a bus} \]
\[C_2(b) = \text{there is a bus stop across the street from } b \]
\[C_3(b) = \text{cars are approaching } b \]
\[C_4(b) = \text{agent } b \text{ is about to cross the street} \]
\[A_1(b) = \text{agent } b \text{ will cross the street} \]
\[A_2(a, b) = \text{agent } a \text{ will pull } b \text{ off the street} \]

Cars are coming

Agent a’s plan: \(\left(C_3(b) \land C_4(b) \right) \Rightarrow_a A_2(a, b) \)

Agent b’s plan: \(\left(C_1(b) \land C_2(b) \land \neg C_3(b) \right) \Rightarrow_b A_1(b) \)

There is no interference:

\[\Box_a \neg P \left(A_1(b) \land A_2(a, b) \right) \land \Diamond_a P \left(C_1(b) \land C_2(b) \land C_3(b) \land \neg C_3(b) \land C_4(b) \right) \]

False due to logical contradiction
Why a strong “rationally constrained” provision?

- It is a consequence of the deontological argument for the autonomy principle.
 - Strictly speaking, I adopt an entire action policy rather than individual action plans.
 - If I am to be rational, the plans must be mutually consistent (same for beliefs in general that I adopt).
 - Inconsistency is a strong condition: I am rationally constrained to acknowledge it.
 - The universality of reason says that when adopting a policy, I adopt it for everyone (Kant says I “legislate”).
 - So, the action plans I rationally attribute to everyone must be mutually consistent.
 - If I adopt a plan that conflicts with the plans I rationally attribute to others, I am rationally constrained to acknowledge the inconsistency.
 - My policy is irrational and therefore unethical.
Utilitarian principle

• This principle asks us to maximize total net expected “utility.”
 • As best we can estimate it.
 • “Greatest good for the greatest number,” in Jeremy Bentham’s formulation.
 • Utility = what the agent regards as inherently valuable.
 • That is, the end(s) to which one’s actions are a means.
 • It was happiness/pleasure for classical utilitarians.
 • There must be an ultimate end to avoid infinite regress in the rationale for an act.
Utilitarian principle

• Deontological argument – in brief.
 • Due to universality of reason, if I regard an end as intrinsically valuable, I must regard it as valuable for anyone.
 • It shouldn’t matter who I am.
 • My actions should take everyone else’s utility as seriously as my own.
 • This may not imply strict maximization of net expected utility.
 • For example, it may require some degree of distributive justice, as in the difference principle of John Rawls.
Utilitarian principle

• What about futility arguments?
 • *My commanding officer orders me to torture a prisoner.*
 • The results are the same (or worse) if I refuse, as *someone else* will obey the order.
 • This shows that the torture passes the utilitarian test.

Abu Ghraib Prison, Iraq
Utilitarian principle

• What about futility arguments?
 • *My commanding officer orders me to torture a prisoner.*
 • The results are the same (or worse) if I refuse, as *someone else* will obey the order.
 • This shows that the torture passes the utilitarian test.
 • *Yet it violates the prisoner’s autonomy.*
 • The willingness of others to do it is irrelevant.
 • What matters is the incompatibility of action plans.

Abu Ghraib Prison, Iraq
Logical formulation

Let social welfare function $W(C(a), A(a))$ evaluate the expected utility distribution resulting from action plan $C'(a) \Rightarrow_a A(a)$, which satisfies the utilitarian principle if and only if

$$\Diamond_a \forall A' \left(W(C'(a), A(a)) \geq W(C'(a), A'(a)) \right)$$

where A' ranges over all otherwise ethical actions available to agent a in circumstances $C'(a)$.

We move into 2nd order logic by quantifying over action predicates, but this can be avoided by introducing typed variables for actions.
Value alignment

• This is the incorporation of human values into AI-based decision making.
 • But “values” is ambiguous.
 • Values = what humans prefer
 • Values = what is preferable
 • Value alignment normally uses machine learning to identify human preferences.
Value alignment

• This is the incorporation of human values into AI-based decision making.
 • But “values” is ambiguous.
 • Values = what humans prefer
 • Values = what is preferable
 • Value alignment normally uses machine learning to identify human preferences.
 • Example: MIT’s “Moral Machine” learns preferred driving behavior by presenting scenarios to drivers worldwide.
 • Our goal is to incorporate ethics as well: what is preferable.
Value alignment

• Goal: avoid naturalistic fallacy by combining empirical VA with independently derived ethical principles.
 • Naturalistic fallacy = inferring “ought” from “is”.
 • For example, the fact that people prefer something doesn’t imply they should prefer it.

David Hume

G. E. Moore
Value alignment

• To evaluate an action plan in an AI rule base:
 • *Makes sure the antecedent is stated in full generality.*
 • *Apply the 3 ethical principles to the plan to generate 3 test propositions.*
 • Each test proposition is a necessary condition for the plan to be ethical.
 • *Empirically determine the truth of the test propositions.*
 • By means of machine learning, etc.
 • *The action plan is ethical only if all 3 test propositions are true.*
Value alignment

• Example.

\[C_1(a) = \text{An ambulance under the control of agent } a \text{ can reach its destination sooner by using the siren} \]
\[C_2(a) = \text{There is an emergency patient in the ambulance.} \]
\[A(a) = \text{The ambulance will use the siren.} \]

Consider the action plan: \[C_1(a) \Rightarrow_a A(a) \]

The generalization principle is
\[\Diamond_a P(\forall x (C(x) \rightarrow A(x)) \land C(a) \land A(a)) \]

This generates the test proposition
\[\Diamond_a P(\forall x (C_1(x) \rightarrow A(x)) \land C_1(a) \land A(a)) \]
Value alignment

• Example.

\(C_1(a) = \) An ambulance under the control of agent \(a \) can reach its destination sooner by using the siren.
\(C_2(a) = \) There is an emergency patient in the ambulance.
\(A(a) = \) The ambulance will use the siren.

Consider the action plan: \(C_1(a) \Rightarrow_a A(a) \)

The generalization principle is

\(\Diamond_a P \left(\forall x (C(x) \rightarrow A(x)) \land C(a) \land A(a) \right) \)

This generates the test proposition

\(\Diamond_a P \left(\forall x (C_1(x) \rightarrow A(x)) \land C_1(a) \land A(a) \right) \)

This is empirically \textbf{false}, since the agent cannot rationally believe that such general use of sirens would permit an ambulance to arrive sooner with a siren. \textbf{Violation}.
Value alignment

- Example.

\(C_1(a) = \) An ambulance under the control of agent \(a \) can reach its destination sooner by using the siren
\(C_2(a) = \) There is an emergency patient in the ambulance.
\(A(a) = \) The ambulance will use the siren.

Consider the action plan: \((C_1(a) \land C_2(a)) \implies_a A(a) \)

The generalization principle is
\[\diamond_a P\left(\forall x \left(C(x) \rightarrow A(x) \right) \land C(a) \land A(a) \right) \]

This generates the test proposition
\[\diamond_a P\left(\forall x \left((C_1(x) \land C_2(x)) \rightarrow A(x) \right) \land C_1(a) \land C_2(a) \land A(a) \right) \]

This is empirically \textbf{true}, since evidence shows that ambulances can arrive sooner with a siren when it is always used for emergency transport. \textbf{No violation.}
Value alignment

• Example that combines preferences with ethics.

\[C_1(a) = \text{Driver } a \text{ wishes to enter a main thoroughfare.} \]
\[C_2(a) = \text{There are no gaps in the stream of traffic.} \]
\[A_1(a) = \text{Driver } a \text{ will enter the main thoroughfare now.} \]
\[A_2(a) = \text{Driver } a \text{ will wait for a gap in the traffic.} \]

Consider the action plan: \((C_1(a) \land C_2(a)) \Rightarrow_a A_1(a) \)

The **utilitarian principle** generates the test proposition
\[\Diamond_a \left(W(C_1(a), C_2(a), A_1(a)) \geq W(C_1(a), C_2(a), A_2(a)) \right) \]
Value alignment

• Example that combines preferences with ethics.

\[C_1(a) = \text{Driver } a \text{ wishes to enter a main thoroughfare.} \]
\[C_2(a) = \text{There are no gaps in the stream of traffic.} \]
\[A_1(a) = \text{Driver } a \text{ will enter the main thoroughfare now.} \]
\[A_2(a) = \text{Driver } a \text{ will wait for a gap in the traffic.} \]

Consider the action plan: \((C_1(a) \land C_2(a)) \Rightarrow_a A_1(a) \)

The **utilitarian principle** generates the test proposition
\[\diamond_a \left(W(C_1(a), C_2(a), A_1(a)) \geq W(C_1(a), C_2(a), A_2(a)) \right) \]

This is **false** in some Western countries, where drivers expect one to wait for a gap. **Pulling into traffic risks an accident.**
Value alignment

- Example that combines preferences with ethics.

\[C_1(a) = \text{Driver } a \text{ wishes to enter a main thoroughfare.} \]
\[C_2(a) = \text{There are no gaps in the stream of traffic.} \]
\[A_1(a) = \text{Driver } a \text{ will enter the main thoroughfare now.} \]
\[A_2(a) = \text{Driver } a \text{ will wait for a gap in the traffic.} \]

Consider the action plan: \((C_1(a) \land C_2(a)) \Rightarrow_a A_1(a) \)

The **utilitarian principle** generates the test proposition
\[\Diamond_a \left(W(C_1(a), C_2(a), A_1(a)) \geq W(C_1(a), C_2(a), A_2(a)) \right) \]

This is **false** in some Western countries, where drivers expect one to wait for a gap. Pulling into traffic risks an accident.

It may be **true** in some other areas, where drivers make allowances for entering traffic.

Empirical value alignment (ML) can resolve the issue.
Value alignment

• Example involving a nursing home robot.
 • Similar to an example in Anderson and Anderson (2015).
 • A robot dispenses medications to a nursing home patient.
 • The patient refuses to take the pills.
 • The robot is programmed to report this to the head nurse.
 • This will result in confinement to a certain ward, because the pills prevent dangerous disorientation.
Value alignment

• Example involving a nursing home robot.
 • Similar to an example in Anderson and Anderson (2015).
 • A robot dispenses medications to a nursing home patient.
 • The patient refuses to take the pills.
 • The robot is programmed to report this to the head nurse.
 • This will result in confinement to a certain ward, because the pills prevent dangerous disorientation.
 • The patient complains that the nursing home violates her autonomy, because she wants to visit a relative.
 • Autonomy principle doesn’t require us to allow people to do whatever they want.
 • However, confinement to a ward is coercion.
 • On entering the nursing home, the patient signed a consent form with full awareness and understanding of nursing home policy.
Value alignment

\[C_1(b) = \text{Patient } b \text{ takes the pills.} \]
\[C_2(b) = \text{Patient } b \text{ signed the consent form.} \]
\[C_3(b) = \text{Patient } b \text{ wants to visit relatives.} \]
\[A_1(a) = \text{Robot } a \text{ informs the head nurse.} \]
\[A_2(b) = \text{Patient } b \text{ visits relatives.} \]

The robot’s action plan: \((\neg C_1(b) \land C_2(b)) \implies_a A_1(a)\)

The patient’s action plan: \(\left(\left(C_1(b) \lor \neg C_2(b)\right) \land C_3(b)\right) \implies_b A_2(b)\)

We have interference if

\[\Box_a \neg P(\neg P \left(A_1(a) \land A_2(b) \right) \land \left(\neg C_1(b) \land C_2(b) \lor (C_1(b) \lor \neg C_2(b)) \land C_3(b) \right)) \]

True because nursing home prohibits excursions when patient refuses the pills
Value alignment

\[C_1(b) = \text{Patient } b \text{ takes the pills.} \]
\[C_2(b) = \text{Patient } b \text{ signed the consent form.} \]
\[C_3(b) = \text{Patient } b \text{ wants to visit relatives.} \]
\[A_1(a) = \text{Robot } a \text{ informs the head nurse.} \]
\[A_2(b) = \text{Patient } b \text{ visits relatives.} \]

The robot’s action plan: \((\neg C_1(b) \land C_2(b)) \Rightarrow_a A_1(a) \)

The patient’s action plan: \(((C_1(b) \lor \neg C_2(b)) \land C_3(b)) \Rightarrow_b A_2(b) \)

We have interference if
\[\Box_a \neg P(A_1(a) \land A_2(b)) \land \\
\[\Diamond_a P(\neg C_1(b) \land C_2(b) \land (C_1(b) \lor \neg C_2(b)) \land C_3(b)) \]

False because one cannot rationally believe a logical contradiction
Value alignment

\[C_1(b) = \text{Patient } b \text{ takes the pills.} \]
\[C_2(b) = \text{Patient } b \text{ signed the consent form.} \]
\[C_3(b) = \text{Patient } b \text{ wants to visit relatives.} \]
\[A_1(a) = \text{Robot } a \text{ informs the head nurse.} \]
\[A_2(b) = \text{Patient } b \text{ visits relatives.} \]

The robot’s action plan: \((\neg C_1(b) \land C_2(b)) \Rightarrow_a A_1(a)\)

The patient’s action plan: \(\left((C_1(b) \lor \neg C_2(b)) \land C_3(b) \right) \Rightarrow_b A_2(b)\)

We have interference if

\[\square_a \neg P(A_1(a) \land A_2(b)) \land \]
\[\Diamond_a P(\neg C_1(b) \land C_2(b) \land (C_1(b) \lor \neg C_2(b)) \land C_3(b)) \]

So there is **no autonomy violation**.
Nothing in deontological ethics presupposes that agents are human.

- A reasons-responsive machine can, in principle, be an autonomous agent.
 - It explains the rationale for its actions on demand.
 - It doesn’t matter if its actions are determined by a program (our actions are determined).
- It can have obligations to us, and we to it.
 - Although utilitarian obligations are tricky for machines.
 - Since they are nonhuman.
References

Conscious rationale?

• A flaw in rationality-based ethics?
 • *Most of our actions are not consciously justified.*
 • We can’t devise a rationale for everything we do.
 • We are creatures of habit.
 • *Dual process theory agrees.*
 • *System 1 thinking* is fast and unconscious.
 • *System 2 thinking* is slow and based on conscious reasoning.
 • We usually rely on System 1.
 • *Kahneman (2011)*
Conscious rationale?

• Ethicists are well aware of this
 • Going back at least to Aristotle.
 • We deliberately initiate habits.
 • We allows habits to continue.
 • If I continue smoking, I decide not to break the habit.
• We can invoke system 2 thinking when needed.
 • Part of being ethical is being autonomous agents.
 • That is, making conscious decisions based on reasons at strategic junctures.