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Abstract

Optimization models typically seek to maximize overall benefit or minimize
total cost. Yet equity and fairness are important elements of many practical
decisions, and it is much less obvious how to express them mathematically.
We provide a critical survey of various schemes that have been proposed for
formulating ethics-related criteria, including those that integrate efficiency
and equity concerns. The survey covers inequality measures, Rawlsian
maximin and leximax criteria, alpha fairness and proportional fairness (also
known as the Nash bargaining solution), Kalai-Smorodinsky bargaining,
and recently proposed threshold-based schemes for combining utilitarian
with maximin and leximax criteria. It also examines statistical fairness
metrics that are popular in machine learning, including demographic parity,
equalized odds, accuracy parity, and predictive rate parity. We present what
appears to be the best practical approach to formulating each criterion in
a linear, nonlinear, or mixed integer programming model. We analyze the
mathematical properties of the various formulations, presenting new results
in several cases, and indicate some of the strengths and weaknesses of each.
We also cite relevant philosophical and ethical literature where appropriate.

Keywords: equity modeling, fairness, distributive justice

1. Introduction

There is growing interest in incorporating equity-related criteria into
optimization models. Practical applications in health care, disaster man-
agement, telecommunications, facility location, and other areas increasingly
raise issues related to the fair allocation of resources. Yet it is far from
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obvious how to formulate such ethical concerns mathematically. While it
is normally straightforward to formulate an objective function that reflects
efficiency or cost, fairness can be understood in multiple ways, with no
generally accepted method for representing any of them in a mathematical
idiom. While methods for formulating equity concerns frequently appear in
research papers, they are often discussed and selected in an ad hoc manner.

We therefore undertake to provide a survey and assessment of a broad
range of equity criteria that can be incorporated into an optimization model.
We cover inequality metrics, Rawlsian maximin and leximax criteria, various
convex combinations of these, alpha fairness and proportional fairness (the
latter also known as the Nash bargaining solution), the Kalai-Smorodinsky
bargaining solution, and recently proposed threshold-based criteria for com-
bining utilitarianism with maximin and leximax criteria. We also examine
statistical fairness metrics that are popular in machine learning, including
demographic parity, equalized odds, accuracy parity, and predictive rate
parity. We present what appears to be the best practical approach to
formulating each criterion in a linear, nonlinear, or mixed integer program-
ming model. We analyze some mathematical properties of the various
formulations, present new results in several cases, and indicate some of the
strengths and weaknesses of each. We place particular emphasis on models
that combine efficiency and equity criteria, because both are important in
most practical applications.

To our knowledge, there is no existing survey of this kind. Karsu and
Morton (2015) discuss several models in their excellent survey of inequality-
averse optimization, along with applications and some underlying math-
ematical theory. Ogryczak et al. (2014) survey fairness criteria that have
been used in communication networks and location models, with a discussion
of their properties and relationship with leximax criteria. Our contribution
differs from these in that it aims for broad coverage of equity concepts while
providing a practical guide for the analyst who wishes to incorporate equity
concerns into an optimization model of a given application. It accordingly
includes a focus on how to formulate the various criteria for efficient solution
by mathematical programming software. It also covers equity formulations
developed since the earlier surveys, as well as fairness measures from machine
learning. Finally, it provides some references to relevant philosophical and
ethical literature, although we make no attempt here to resolve underlying
philosophical issues.

We begin below by stating a generic optimization problem that provides
a framework for the discussion to follow. In particular, we suppose that
each equity criterion we consider is encapsulated in a social welfare function
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(SWF) that serves as the objective function of the optimization model.
We next describe two properties that are possessed by some of the SWFs
and that are helpful for understanding the nature of the equity concepts
they represent. These are the well-known Pigou–Dalton condition and a
lesser known, slightly weaker Chateauneuf–Moyes condition that is arguably
better suited to assess equity criteria. We determine which SWFs satisfy
one or both of these conditions, resulting in several new theorems that are
proved in the Appendix. The equity criteria we study are summarized in
Tables 1–3, which indicate the section of the paper that deals with each.
The concluding section of the paper draws on the foregoing discussion to
suggest some general guidelines for selecting an equity criterion for a given
application.

In the interest of brevity, we omit discussion of several fairness metrics
that are similar to those covered here, designed for specific applications,
and/or difficult to optimize. These include some of the fairness measures
developed for communications networks, such as Jain’s index (Jain et al.
1984), QoE fairness (Georgopoulos et al. 2013, Hoßfeld et al. 2018), TCP
fairness (Pokhrel et al. 2016), G’s fairness index, and Bossaert’s fairness
index (Mehta 2020). Additional metrics from the economics literature include
the entropy-based Theil index (Theil 1967, Cowell and Kuga 1981) and the
related Atkinson index (Atkinson 1975). We also omit some statistical bias
measures used in machine learning, as described in Section 10.

2. Generic Optimization Problem

The task before us is to incorporate equity into an existing optimization
model of the form maxx{f(x) | x ∈ Sx}. A generic optimization problem
that accomplishes this can be stated

max
u,x

{
W (u)

∣∣ u = U(x), x ∈ Sx
}

(1)

where u = (u1, . . . , un) is a vector of utilities distributed across parties
1, . . . , n. The utilities can be profit, negative cost, or some other benefit
that is appropriate to the application. It is this distribution of utilities
that we wish to be equitable as well as, perhaps, efficient. We replace the
original objective function f(x), if any, with a social welfare function W (u)
that measures the desirability of a given utility distribution u. We want
W (u) to incorporate equity, as well as perhaps efficiency elements measured
by f(x). The intent of this paper is to survey and evaluate functions W (u).
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Table 1: Summary of fairness criteria, part 1. The columns labeled P–G and C–M indicate
whether the Pigou–Dalton and Chateauneuf–Moyes conditions are satisfied. The model
type assumes that the original problem constraints are linear with continuous variables.

Criterion P–G? C–M? Model Comments

Inequality measures

Relative range
(Section 4.1)

yes yes LP The spread between min and max utilities,
normalized by the mean. Inequality metrics
may be appropriate when there is a particular
interest in equality rather than broader
concepts of fairness.

Relative mean
deviation
(Section 4.1)

yes yes LP The normalized average deviation from the
mean. Takes in account all utilities rather
than only the two extremes.

Coefficient of
variation
(Section 4.1)

yes yes NLP1 The normalized standard deviation. Can be
used when large deviations from the mean
are disproportionately significant.

Gini coefficient
(Section 4.2)

yes yes LP Perhaps the best known measure of
inequality. Proportional to the area
between the Lorenz curve and a diagonal
line representing perfect equality. Lies in
the interval [0,1], with 0 indicating perfect
equality.

Hoover index
(Section 4.2)

yes yes LP The fraction of total utility that must be
redistributed to achieve perfect quality.
Also related to the Lorenz curve, and
proportional to the relative mean deviation.

Fairness for the disadvantaged

Maximin
(Section 5.1)

yes yes LP Maximizes the minimum utility. Based on
the Rawlsian principle that inequality is
justified only to the extent that it improves
the welfare of the worst off. Once maximin
is obtained, does not consider the welfare of
other disadvantaged individuals.

Leximax
(Section 5.1)

yes yes LP Maximizes the welfare of the worst off, then
the 2nd worst off, and so forth. Considers
the welfare of all disadvantaged individuals
but requires solving a sequence of
optimization problems.

McLoone index
(Section 5.2)

no yes MILP Compares total utility utility of those below
the median to what they would enjoy if
brought up to the median. Concerned only
with the welfare of the lower half.

1A convex quadratic programming problem with linear constraints.
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Table 2: Summary of fairness criteria, part 2.

Criterion P–G? C–M? Model Comments

Combining efficiency and fairness – Classical methods

Alpha fairness
(Section 7.1)

yes yes NLP2 Parameter α regulates equity vs efficiency, with
α = 0 corresponding to a pure utilitarian and
α =∞ to a pure maximin criterion. Unclear
how to interpret α in practice.

Proportional
fairness
(Section 7.1)

yes yes NLP2 Special case of alpha fairness with α = 1, also
known as the Nash bargaining solution, and
used in engineering applications. Has been
justified with axiomatic and bargaining
arguments, albeit with a strong interpersonal
noncomparability assumption.

Kalai-
Smorodinsky
bargaining
(Section 7.2)

no no LP Maximizes minimum relative concession by
maximizing equal fraction of each player’s
potential gain. Can be defended as outcome of
a bargaining procedure and tends to favor those
with greater opportunity. Failure of P–G and
C–M conditions may be a concern.

Combining efficiency and maximin fairness – Threshold methods

Utility threshold
(Section 8.1)

no yes MILP3 Uses a maximin criterion until utility cost of
fairness becomes too great, and then switches
some players to a utilitarian criterion. The
break point is controlled by parameter ∆,
selected so that players within ∆ of the lowest
utility are seen as sufficiently disadvantaged to
receive greater priority. Equity component is
sensitive to the utility level only of the worst-off
player.

Equity threshold
(Section 8.2)

yes yes LP Uses a utilitarian criterion until inequity
becomes too great, and then switches some
players to a maximin criterion. The parameter
∆ is selected so that players already more than
∆ above the lowest utility are not seen as
deserving greater utility if the other utilities
remain unchanged. The equity component is
again sensitive to the utility level only of the
worst-off player.

2A concave nonlinear maximization problem with linear constraints.
3The MILP model of the threshold function is sharp (defines convex hull of feasible set).
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Table 3: Summary of fairness criteria, part 3.

Criterion P–G? C–M? Model Comments

Combining efficiency and leximax fairness – Threshold methods

Utility threshold,
predefined
priorities
(Section 9.1)

no no MILP Maximizes a utility threshold function that
combines utilitarian and maximin criteria, then
applies a leximax criterion to optimal solutions
if one or more have a utility spread of ∆ or less.
Makes the strong assumption that priorities of
the players can be fixed in advance. SWF is
discontinuous for n ≥ 3, a potential drawback.

Utility threshold,
no predefined
priorities
(Section 9.2)

no yes MILP4 Solves a sequence of optimization problems in
which the kth problem determines the kth
smallest utility in the socially optimal solution.
Each problem assumes the smallest k − 1
utilities have been fixed and maximizes a SWF
that combines utilitarian and maximin criteria
while giving the kth worst-off player priority
that is regulated by ∆. Combines leximax and
utilitarian criteria and so considers utilities of
all disadvantaged players, not just the very
worst-off.

Statistical fairness metrics

Demographic
parity
(Section 10.1)

LP The fraction of minority individuals selected for
a benefit should be the same as the fraction of
majority individuals selected. A very strict
criterion that can deny individuals benefits for
which they are known to be qualified.

Equalized odds
(Section 10.2)

LP The fraction of (un)qualified individuals who
are selected should be the same in minority and
majority groups.

Accuracy parity
(Section 10.3)

LP The accuracy rate (fraction of individuals
correctly selected or rejected) should be the
same in minority and majority groups.

Predictive rate
parity
(Section 10.4)

MINLP5 The fraction of individuals correctly selected
should be the same for minority and majority
groups. Unclear that the advantages of this
criterion (if any) justify solving the difficult
optimization problem that results.

4A sequence of tractable MILP models is solved. Valid inequalities are identified.
5A difficult mixed integer/nonlinear optimization problem.
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The vector-valued function U(x) defines how the original problem vari-
ables x determine the distribution of utilities. In many applications, some of
the original variables xj already represent the utilities we wish to distribute,
and there is no need to introduce additional variables ui. Nonetheless, we
will consistently refer to the utilities to be distributed as u1, . . . , un. To
simplify notation, we will suppose that the constraint u = U(x) is encoded
in constraints represented by (u,x) ∈ S, so that the problem (1) becomes
simply

max
u,x

{
W (u)

∣∣ (u,x) ∈ S
}

(2)

Thus (u,x) ∈ S if and only if u = U(x) and x ∈ Sx.
Fairness can also be represented as a constraint by bounding the social

welfare function W (u). This results in an optimization problem of the form

max
u,x

{
f(x)

∣∣W (u) ≥ LB, (u,x) ∈ S
}

(3)

To simplify exposition, we will discuss only models of the form (2), but they
can be converted to fairness-constrained problems when desired.

A simple medical triage problem provides an illustration of the generic
model. There are n patients who require treatment, but subject to a limited
budget of B. The cost of treating patient i is ci. The utility experienced by
patient i, measured in quality-adjusted life years, is ai without treatment
and ai + bi with treatment. The objective is to allocate treatments in an
equitable and effective fashion. If binary variable xi = 1 when patient
i is treated, the utility function U(x) is given by Ui(x) = aixi + bi for
i = 1, . . . , n. The resulting optimization problem (2) is

max
u,x

W (u)

∣∣∣∣∣∣
∑
i

cixi ≤ B

ui = ai + bixi, xi ∈ {0, 1}, all i


The choice of social welfare function W (u) should reflect how equity and
effectiveness are to be understood and balanced in this context.

A major element of this paper is showing how to write the optimization
problem (2) in a form suitable for one of the highly advanced mathemat-
ical programming solvers now available. Naturally, the difficulty of (2)
depends to a great degree on the nature of the constraints that describe
the feasible set Sx. However, if we suppose that these constraints are (or
can be approximated by) linear equations and inequalities over continu-
ous variables, the resulting models have the form indicated in Tables 1–3.
Eleven of the 19 are linear programming (LP) models, a problem class
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that is extremely well solved. Four are mixed integer/linear programming
(MILP) problems, which are combinatorial in nature, but for which highly
developed solvers are available. Three are nonlinear programming (NLP)
problems that are of only moderate difficulty because they minimize convex
functions (or maximize concave functions) subject to linear constraints.
Indeed, one of these is a highly tractable convex quadratic programming
problem with linear constraints. Only one of the models, a nonconvex mixed
integer/nonlinear programming (MINLP) problem, poses a substantial and
possibly insuperable challenge.

The linearity assumption for constraints is actually quite reasonable in
many applications, because it is consistent with a great deal of flexibility
to define the problem. Suppose, for example, that the set Sx of feasible
values of x is convex, and the utility function U(x) is linear or concave, as
it commonly is when there are nonincreasing returns to scale. In such a
case, the feasible set S can be approximated to any desired degree with a
linear system Au+Bx ≤ b.

If some of the original problem variables xi are discrete, however, an
otherwise LP problem becomes an MILP problem, as in the medical example
just stated. An NLP problem becomes a mixed integer/nonlinear program-
ming (MINLP) problem, which can be quite hard to solve. An MILP
problem of course remains an MILP problem.

3. Pigou–Dalton and Chateauneuf–Moyes Conditions

The Pigou–Dalton condition is frequently used to assess social welfare
functions, particularly those that measure equality (Dalton 1920, Moulin
2004). It is satisfied when any utility transfer from a better-off party to
a worse-off party increases (or does not reduce) social welfare. However,
the suitability of this condition for assessing an equity metric has been
questioned, for example by Chateauneuf and Moyes (2005). They propose a
slightly weaker condition that considers transfers of utility from a better-off
class to a worse-off class rather than from one individual to another. The
choice of condition is relevant here, because we find that some interesting
SWFs satisfy the weaker condition but not the stronger.

Formally, a social welfare function W (u) satisfies the Pigou–Dalton con-
dition if W (u + εei − εej) ≥ W (u) for any i, j and any ε > 0 for which
ui + ε ≤ uj − ε, where ei, ej are the ith and jth unit vectors, respectively.
A stricter form of the condition requires W (u+ εei − εej) > W (u), but we
use the weaker form.
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The Chateauneuf–Moyes (C–M) condition examines the consequences of
transferring a given amount of utility from individuals whose utility lies at
or above that of a given individual (taking an equal share from each) to
those whose utility lies at or below below that of a less fortunate individual
(giving an equal share to each). Chateauneuf and Moyes provide arguments
for why this type of condition is preferable to Pigou–Dalton. One is the
simple observation that while a pairwise Pigou–Dalton transfer reduces
inequality between two individuals, it may increase inequality between those
individuals and others. A C–M transfer does not incur this problem, because
the donor and recipient classes respectively lie completely above and below
the rest of the population.

To define the C–M condition formally, let us say that a C–M transfer
is a transfer of utility from u to u′ such that u1 ≤ · · · ≤ un as well as
u′1 ≤ · · · ≤ u′n, and for some pair of integers `, h with 1 ≤ ` < h ≤ n, we
have u` < uh and

u′ = u+
ε

`

∑̀
i=1

ei −
ε

n− h+ 1

n∑
i=h

ei

for some ε > 0. A SWF W (u) satisfies the C–M condition if C–M transfers
never decrease social welfare. That is, W (u′) ≥W (u) for any C–M transfer
from u to u′.

It is difficult to say in general whether a SWF should satisfy either of
these conditions, but an indication of whether they do so may be useful in
determining whether the SWF is suitable for a particular application.

4. Inequality Measures

The first type of fairness measure we study is the degree of equality in
the distribution of utilities, for which several statistical metrics have been
proposed (Cowell 2000, Jenkins and Van Kerm 2011). There is a wide variety
of philosophical opinion on the ethical significance of equality, ranging from
the view that we have an irreducible obligation to strive for equality, to the
view that inequality is unfair only when it reduces total utility (Frankfurt
2015, Parfit 1997, Scanlon 2003). In any event, it is generally acknowledged
that equality is not the same concept (or cluster of concepts) as fairness, even
when the two are closely related. An equality metric can be appropriate in
a context where a specifically egalitarian distribution is the primary goal,
without regard for efficiency or other forms of equity.
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Inequality measures have been used for inequity averse optimization in
a broad range of applications. Examples of these papers are summarized
in Karsu and Morton (2015). More recently, inequality measures are also
considered in the growing area of algorithmic fairness. For instance, Leon-
hardt et al. (2018) study Gini coefficient type measures for estimating the
disparity in user satisfaction and recommendation quality of recommender
systems. Speicher et al. (2018) and Sühr et al. (2019) respectively adopt a
generalized entropy index to evaluate the degree of unfairness in predictors
trained by machine learning and in two-sided matching platforms.

We present optimization models for relative range, relative mean devi-
ation, coefficient of variation, the Gini coefficient, and the Hoover index.
All of them are easily shown to satisfy the Pigou–Dalton condition. The
McLoone index can also be regarded as a measure of inequality, but we
consider it in the next section as measuring fairness for the disadvantaged.

4.1. Measures of relative dispersion

All of the dispersion measures we consider are normalized by the mean
utility so as to be invariant under rescaling of utilities. The relative range
of utilities is an inequality metric that, when negated, yields the SWF

W (u) = −(1/ū)
(
umax − umin

)
where umax = maxi{ui}, umin = mini{ui}, and ū = (1/n)

∑
i ui. We assume

with little loss of generality that the constraint set implies ū > 0. Then
since the SWF is a ratio of affine functions, the formulation of W (u) in
an optimization model can be linearized using the same change of variable
as in linear-fractional programming (Charnes and Cooper 1962). Thus we
introduce a scalar variable t and write u = u′/t and x = x′/t, which yields
the optimization model

min
x′,u′,t

u′min,u
′
max

{
u′max − u′min

∣∣∣∣∣ u′min ≤ u′i ≤ u′max, all i

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′

}

where u′min, u
′
max are regarded as variables along with x′, u′, and t. If

(x̂′, û′, û′min, û
′
max, t̂) solves this problem, then u = û′/t̂ is a distribution

that minimizes the relative range. The tractability of this model depends
on whether the constraints defining S become harder after the change of
variable. The easiest case arises when the constraints are linear, as in linear-
fractional programming. If the original constraints are Au+ Bx ≤ b, they
become another linear system Au′ + Bx′ ≤ tb after the variable change.
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More generally, if the original constraints have the form g(u,x) ≤ b for
homogeneous g, they retain essentially the same form g(u′,x′) ≤ tb after
the variable change.

Another dispersion metric is the relative mean deviation, which measures
inequality more comprehensively by considering all utilities rather than only
the minimum and maximum. The SWF is

W (u) = −(1/ū)
∑
i

|ui − ū|

This can be linearized by using the same change of variables as before:

min
x′,u′,v,t

{∑
i

vi

∣∣∣∣∣ −vi ≤ u′i − ū′ ≤ vi, all i

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′

}
(4)

where v1, . . . , vn are new variables. This is again an LP problem if S is
defined by a linear constraint set.

The coefficient of variation is the normalized standard deviation. It may
be appropriate when large deviations from the mean are disproportionately
significant, but it has the possible drawback of introducing a nonlinear
objective function. The SWF is

W (u) = −1

ū

[ 1

n

∑
i

(ui − ū)2
]1

2

Although the numerator is nonlinear, we can use the same change of variable
to formulate the optimization problem as

min
x′,u′,v,t

{[ 1

n

∑
i

(u′i − ū′)2
]1

2

∣∣∣∣ ū′ = 1, t ≥ 0
(u′,x′) ∈ S′

}

This is not an LP problem, but we can obtain the same optimal solution
by solving it without the exponent 1

2 . If the feasible set S′ is convex, this
yields a convex nonlinear programming problem in which all local optima
are global optima. If S is defined by linear constraints, it can be solved by
particularly efficient quadratic programming algorithms that are available
in many state-of-the-art optimization packages.

4.2. Gini coefficient and Hoover index

The Gini coefficient is by far the best known measure of inequality, as
it is routinely used to measure income and wealth inequality (Gini 1912).
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It is proportional to the area between the Lorenz curve and a diagonal line
representing perfect equality and therefore vanishes under perfect equality.
The SWF is W (u) = −G(u), where

G(u) =
1

2ūn2

∑
i,j

|ui − uj |

Again applying the change of variable from linear-fractional programming,
the Gini criterion can be linearized:

min
x′,u′,V,t

 1

2n2

∑
i,j

vij

∣∣∣∣∣ −vij ≤ u′i − u′j ≤ vij , all i, j

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′


where vij is a new variable for all i, j. This is an LP problem if S is defined
by linear constraints.

The Hoover index is also related to the Lorenz curve, as it is proportional
to the maximum vertical distance between the Lorenz curve and a diagonal
line representing perfect equality (Hoover 1936). It is also proportional
to the relative mean deviation and therefore satisfies the Pigou–Dalton
condition. It can be interpreted as the fraction of total utility that would
have to be redistributed to achieve perfect equality. The SWF is

W (u) = − 1

2nū

∑
i

|ui − ū|

The Hoover index can be minimized by solving the same model (4) as for
the relative mean deviation.

5. Fairness for the Disadvantaged

Rather than focus solely on inequality, fairness measures can prioritize
the disadvantaged. Far and away the most famous of such measures is the
difference principle of John Rawls (1999), a maximin criterion that is based
on careful philosophical argument and debated in a vast literature (surveyed
in Freeman 2003, Richardson and Weithman 1999). The difference principle
can be plausibly extended to a lexicographic maximum principle. There is
also the McLoone index, which is a statistical measure that emphasizes the
lot of the less advantaged.

The Rawlsian maximin criterion has been a popular fairness measure
for decades. Early works on fair resource allocation, such as bandwidth
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allocation, often choose the maximin criterion to seek the best possible per-
formance for the worst-off service among services competing for bandwidth
(Luss 1999, Ogryczak and Śliwiński 2002, Ogryczak et al. 2008). Recent
research has applied the criterion to more diverse problem contexts. For ex-
ample, Stelmakh et al. (2018) design an algorithm for making paper-reviewer
assignment that maximizes the review quality of the most disadvantaged
paper, and Nanda et al. (2020) formalize a maximin fairness measure for
ridesharing. In addition, the Rawlsian view of fairness is gaining recognition
in machine learning as an alternative to the dominant statistical fairness
metrics (Hashimoto et al. 2018, Heidari et al. 2019, Shah et al. 2021).

5.1. Rawlsian criteria

The Rawlsian difference principle states that inequality should exist
only to the extent that it is necessary to improve the lot of the worst-off.
It is defended with a social contract argument that, in its simplest form,
maintains that the structure of society must be negotiated in an “original
position” in which people do not yet know their station in society. Rawls
argues that one can rationally assent to the possibility of ending up on the
bottom only if that person would have been even worse off in any other
social structure, whence an imperative to maximize the lot of the worst-off.
The principle is intended to apply only to the design of social institutions,
and only to the distribution of “primary goods,” which are goods that any
rational person would want. Yet it can be adopted as a general criterion for
distributing utility, namely a maximin criterion that maximizes the simple
SWF W (u) = mini{ui}. This objective is readily linearized, as in the
optimization model

max
x,u,w

{
w
∣∣ w ≤ ui, all i; (u,x) ∈ S

}
The maximin criterion obviously satisfies the Pigou–Dalton condition, al-
though almost vacuously, because it considers only the smallest utility level.

The maximin criterion can force equality even when doing so is very
costly in terms of total utility. Suppose, for example that S is defined
only by a budget constraint

∑
i xi ≤ B (with x ≥ 0) and utility functions

ui = aixi. Then the maximin solution equalizes the utilities, with each
individual experiencing utility u0 = B/

∑
i(1/ai). If individual k’s welfare

is very expensive to provide, perhaps due to an incurable disease, then ak
is very small, and individual k consumes almost all the resources, u0/ak.
The utility of everyone else is reduced to the same low level u0 that can
be achieved for individual k. One might impose an upper bound dk on
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individual k’s resource consumption, but then the maximin criterion is
satisfied by reducing everyone’s utility even more, namely to individual k’s
utility akdk. This leaves unused resources B − dkak

∑
i(1/ai), but the

maximin criterion provides no incentive to distribute them.
The maximin criterion can be plausibly extended to lexicographic max-

imization (leximax), which can remove the problem of leftover resources in
the previous example. Leximax is achieved by first maximizing the smallest
utility subject to resrouce constraints, then the second smallest, and so forth.
While this can avoid leftover resources, it does not avoid the possibly high
cost of equality in the absence of constraints that prevent it.

A leximax solution can computed by solving a sequence of optimization
problems

max
x,u,w

{
w

∣∣∣∣∣ w ≤ ui, ui ≥ ûik−1
, i ∈ Ik

(u,x) ∈ S

}
(5)

for k = 1, . . . , n, where (x̂, û) is an optimal solution of problem k, ûi0 = −∞,
and ik is defined so that

ûik = min
i∈Ik
{ûi}, with Ik = {1, . . . , n} \ {i1, . . . , ik−1}

If there are two or more utilities ûi that achieve the minimum mini∈Ik{ûi},
it is necessary to enumerate all solutions that result from breaking the tie
to be assured of finding a leximax soution. Ogryczak and Sliwinski (2006)
showed how to obtain a leximax solution with a single optimization model,
but it is impractical for most purposes due to the very large coefficients
required in the objective function.

5.2. McLoone index

The McLoone index compares the total utility of individuals at or below
the median utility to the utility they would enjoy if all were brought up to
the median utility. The index is 1 if nobody’s utility is strictly below the
median, and it approaches 0 if the utility distribution has a very long lower
tail (on the assumption that all utilities are positive.) The McLoone index
benefits the disadvantaged by rewarding equality in the lower half of the
distribution, but it is unconcerned by the existence of very rich individuals
in the upper half. The SWF is

W (u) =
1

|I(u)|ũ
∑
i∈I(u)

ui
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where ũ is the median of utilities in u and I(u) is the set of indices of utilities
at or below the median, so that I(u) = {i | ui ≤ ũ}.

The McLoone index violates the Pigou–Dalton condition but satisfies
the Chateauneuf–Moyes condition. A violation of Pigou–Dalton can be seen
in a 3-person example with u = (a, 1, b), where 0 < a < 1 < b. The median
is 1 and the McLoone index is 1

2(1 + a). A utility transfer from u3 to u2

yields the utility vector (a, 1 + ε, b− ε), where we suppose 0 < ε ≤ 1
2(b− 1).

The median is now 1 + ε and the McLoone index is 1
2(1 + a + ε)/(1 + ε).

The McLoone index has become smaller despite less inequality, a violation
of the P–G condition. However, we have the following.

Theorem 1. The McLoone index satisfies the Chateauneuf–Moyes condition.

We can formulate the McLoone index optimization problem as a mixed
integer programming (MIP) problem with a fractional objective function,
by using standard “big-M” modeling techniques from integer programming.
The model uses 0–1 variables δi, where δi = 1 when i ∈ I(u). The constant
M is a large number chosen so that ui < M for all i. The model is

max
x,u,m
y,z,δ


∑

i yi∑
i zi

∣∣∣∣∣∣∣∣∣
m−Mδi ≤ ui ≤ m+M(1− δi), all i

yi ≤ ui, yi ≤Mδi, δi ∈ {0, 1}, all i

zi ≥ 0, zi ≥ m−M(1− δi), all i∑
i δi ≤ n/2, (u,x) ∈ S


where the new variable m represents the median, variable yi is ui if δi = 1
and 0 otherwise, and variable zi is m if δi = 1 and 0 otherwise in the optimal
solution. The objective function can be linearized by using the same change
of variable as in linear-fractional programming:

max
x′,u′,m′

y′,z′,t,δ


∑
i

y′i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u′i ≥ m′ −Mδi, all i

u′i ≤ m′ +M(1− δi), all i

y′i ≤ u′i, y′i ≤Mδi, δi ∈ {0, 1}, all i

z′i ≥ 0, z′i ≥ m′ −M(1− δi), all i∑
i z
′
i = 1, t ≥ 0∑

i δi ≤ n/2, (u′,x′) ∈ S′


The model is an MILP problem when the constraints defining S are linear.
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6. Convex Combinations

We now move to schemes that combine efficiency and fairness. The most
obvious approach is to maximize a convex combination of the two:

F (u) = (1− λ)
∑
i

ui + λΦ(u)

where Φ(u) is an equity measure. A perennial problem with convex combina-
tions is that it is difficult to interpret λ, particularly when Φ(u) is measured
in units other than utility. For example, if we use the Gini coefficient G(u)
as a measure of inequity, then we must combine utility with a dimensionless
quantity Φ(u) = 1−G(u). Larger values of λ give greater weight to equality,
but in a practical situation it is unclear how to attribute any meaning to a
chosen value of λ.

Eisenhandler and Tzur (2019) use a product rather than a convex com-
bination of utility and 1 − G(u), which nicely reduces to an SWF that is
easily linearized:

W (u) =
∑
i

ui −
1

n

∑
i<j

|uj − ui|

Yet we now have a convex combination of total utility and another equality
metric (one that is proportional to the negative mean absolute difference);
in particular, it is a convex combination in which λ = 1/2. This may be
reasonable for the intended application, but one may ask why this particular
value of λ is suitable, and whether other values should be used in other
contexts. Aside from this are the general issues raised by using equality as
a surrogate for fairness.

Mostajabdaveh et al. (2019) use a linear combination that is equivalent
to
∑

i ui + µ(1 − G(u))
∑

i ui, where µ ∈ [0, 1]. This at least combines
quantities measured in the same units. Yet we again have the problem of
justifying a weight µ. In fact, this combination is equivalent to the convex
combination implied by the Eisenhandler and Tzur criterion, except that λ
is µ/(1 + 2µ) rather than 1

2 .
One can combine utility with the Rawlsian maximin criterion by using

the convex combination

W (u) = (1− λ)
∑
i

ui + λmin
i
{ui} (6)

This, like the proposal of Mostajabdaveh et al., combines quantities that are
measured in the same units. Yet it is again unclear how to select a suitable
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value of λ. Note that if we index utilities so that u1 ≤ · · · ≤ un, (6) is simply
a weighted sum u1 + (1 − λ)

∑
i>1 ui that gives somewhat more weight to

the lowest utility. Yet how much more is appropriate?
One can refine criterion (6) by giving gradually decreasing weights w1 >

w2 > · · · > wn to the utilities in an SWF of the form

W (u) =
∑
i

wiui (7)

Yet this only complicates the task of assigning weights. In addition, since we
do not know how to index the utilities by size in advance, we have the difficult
modeling challenge of ensuring that weight wi is assigned to the ith smallest
utility. There is a long line of work studying this formulation as the objective
function for multi-criteria decision making (e.g., Yager 1997, Ogryczak and
Śliwiński 2003). Hu and Chen (2020) provide a novel perspective on this
SWF in machine learning: they view (7) as the objective function in a
classifier training model and establish its correspondence with the commonly
studied fairness constrained loss-minimization training models.

7. Alpha Fairness and Kalai-Smorodinksy Bargaining

Alpha fairness and Kalai-Smorodinksy bargaining provide alternative
and perhaps more satisfactory means of combing equity and efficiency than
convex combinations. Alpha fairness regulates the combination with a con-
tinuous parameter α, where larger values of α signify a greater emphasis on
equity. A famous special case is the Nash bargaining solution, which corre-
sponds to α = 1. Kalai-Smordinsky bargaining, proposed as an alternative
to Nash bargaining, allots the parties the largest possible fraction of their
potential utility while observing fairness by equalizing that fraction.

7.1. Alpha fairness and Nash bargaining

Alpha fairness (Mo and Walrand 2000, Verloop et al. 2010) is represented
by a family of SWFs having the form

Wα(u) =


1

1− α
∑
i

u1−α
i for α ≥ 0, α 6= 1∑

i

log(ui) for α = 1

These SWFs form a continuum that stretches from a utilitarian criterion
(α = 0) to a maximin criterion as α → ∞. Lan et al. (2010) provide

17



an axiomatic treatment of α-fairness in the context of network resource
allocation, and Bertsimas et al. (2012) study worst-case equity/efficiency
trade-offs implied by this criterion.

The parameter α can be interpreted as quantifying the equity/efficiency
trade-off, because utility uj must be reduced by (uj/ui)

α units to com-
pensate for a unit increase in ui (< uj) while maintaining constant social
welfare. This gives priority to less-advantaged parties, as we desire, with α
indicating how much priority. In particular, the fact that (uj/ui)

α > 1 when
ui < uj implies that Wα(u) satisfies the Pigou–Dalton condition for all α.
Yet it is not obvious what kind of trade-off, and therefore what value of α,
is appropriate for a given application. There is no apparent interpretation
of α independent of its role in the SWF.

The problem of maximizing Wα(u) can be solved directly in the form

max
x,u

{
Wα(u)

∣∣ (u,x) ∈ S
}

without reformulation. The objective function is irreducibly nonlinear, but
it is concave for all α ≥ 0. Thus any local optimum is a global optimum if
the feasible set is convex. The problem can be solved to optimality by such
efficient algorithms as the reduced gradient method, which is a generalization
of the simplex method for LP. The fact that Wα(u) has a simple closed-
form gradient simplifies solution. Maximizing alpha fairness may therefore
be tractable for reasonably large instances, particularly if the constraints
defining S are linear.

Proportional fairness results from setting α = 1 and is often measured
by the product Πiui rather than its logarithm. Maximizing proportional
fairness yields the Nash bargaining solution (Nash 1950), which should not
be confused with the Nash equilibrium of game theory. It corresponds to
selecting a point u in the feasible set that maximizes the volume of the
hyperrectangle with opposite corners at u and the origin. This is illustrated
in Fig. 1(a), where each point on the plot represents the utility outcomes
for two parties that result from some distribution of resources. The set of
feasible utility vectors is the area under the curve. The Nash bargaining
solution is the black dot, which is the feasible point that maximizes the
area of the shaded rectangle. Proportional fairness is frequently used in
engineering, such as for bandwidth allocation in telecommunication networks
and traffic signal timing (Mazumdar et al. 1991, Kelly et al. 1998).

Proportional fairness has axiomatic and bargaining-based derivations
that might be seen as justifying the parameter setting α = 1. For example,
Nash (1950) showed that his bargaining solution for two persons is implied
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Figure 1: (a) Nash bargaining solution for two players. (b) Kalai-Smorodinsky bargaining
solution for two players. In both cases, the default position is the origin.

by a set of axioms for utility theory. Harsanyi (1977), Rubinstein (1982), and
Binmore et al. (1986) showed that the Nash solution is the (asymptotic) out-
come of certain rational bargaining procedures. Yet the axiomatic derivation
relies on a strong axiom of cardinal noncomparability across parties that is
central to the proof. The axiom assumes that the ranking of utility vectors
is invariant under affine transformations of the form φi(ui) = βiui + γi,
which arguably rules out the kind of utility comparisons we need in order to
assess fairness (Hooker 2013). Furthermore, the bargaining theories assume
that the parties begin with a default utility allocation d = (d1, . . . , dn) on
which they fall back if bargaining fails. The proportional fairness SWF then
becomes W (u) = Πi(ui − di). An unfair starting point d could lead to an
unfair outcome even under a rational bargaining procedure, and even if we
grant that rational bargaining from a fair starting point necessarily yields a
fair outcome. This weakens the bargaining argument for the fairness of the
Nash solution in general.

Another issue with proportional fairness, and alpha fairness in general, is
that they can assign equality the same social welfare as arbitrarily extreme
inequality. In a 2-player situation, for example, the distribution u = (s, s)
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has the same social welfare value as (t, T ), where

t =

{
s2/T if α = 1(
2s1−α − T 1−α)1/(1−α)

if α > 1 and 2s1−α > T 1−α

Thus for α = 1, we have t → 0 has T → ∞, and for α > 1, t → 21/(1−α)s
as T →∞, even when social welfare is held fixed. Alpha fairness judges an
egalitarian solution to be no better than a solution in which one party has
arbitrarily more wealth than the other. This anomaly does not arise when
0 ≤ α < 1.

7.2. Kalai-Smorodinsky bargaining

The Kalai-Smorodinsky (K–S) bargaining solution provides parties the
largest possible fraction of their “ideal” utility, subject to the condition that
the fraction is the same for all parties (Kalai and Smorodinsky 1975). A
party’s ideal utility is the maximum feasible utility that party could receive
if the utilities of the other parties were ignored. Increases in utility are
measured with respect to the default utility allocation.

One motivation for the K–S criterion is that it maximizes total utility
while maintaining fairness for all players, where fairness takes into account
the fact that allocating utility to some players is more costly than to others.
This perspective can be suitable in bargaining contexts, as when labor and
management negotiate wages (Alexander 1992). They may see a solution as
fair when the two parties make the same relative concession. A technical
motivation for the criterion is that it has a monotonicity property that
the Nash solution lacks: when the feasible set is enlarged, the negotiated
utilities of the players never decrease. This property is not necessarily
desirable, as when enlargement allows one player to enjoy much greater
utility at a small cost to other players. In any event, the K–S bargaining
solution is defended by Thompson (1994) and is arguably consistent with
the contractarian ethical philosophy developed by Gauthier (1983).

Mathematically, the objective is to find the largest scalar β such that
u = (1 − β)d + βumax is a feasible utility vector, where each umax

i is the
maximum of ui over all feasible utility vectors u. The bargaining solution
is the vector u that maximizes β. Figure 1(b) illustrates the idea for two
players when the default position d is the origin. The K–S solution (black
dot) is the highest point at which the diagonal line intersects the feasible
set.
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Formally, the SWF for K–S bargaining might be defined

W (u) =

{ ∑
i ui, if u = (1− β)d+ βumax for some β with 0 ≤ β ≤ 1

0, otherwise

where umax
i = maxx,u{ui

∣∣ (u,x) ∈ S} for each i. The SWF clearly violates
the Pigou–Dalton condition, because (supposing d = 0) it regards any
utility distribution u1, . . . , un with ratios different from umax

1 , . . . , umax
m as

less socially desirable. For example, if we have a 2-person utility distribution
(u1, u2) = (βumax

1 , βumax
2 ) with umax

1 6= umax
2 for some β with 0 < β ≤ 1,

then a utility transfer that tends to equalize the distribution reduces social
welfare. The Chaueauneuf–Moyes condition is violated for the same reason.
These facts should be carefully considered before the K–S solution is used
in applications. On the other hand, the optimization problem for the K–S
criterion is straightforward:

max
β,x,u

{
β
∣∣ u = (1− β)d+ βumax, (u,x) ∈ S, β ≤ 1

}
Axiomatic justifications are given for the K–S solution by Kalai and

Smorodinsky as well as by Thompson, but they again rely on a strong axiom
of cardinal noncomparability. A bargaining justification might be given by
arguing that it is rational for each player to minimize relative concession,
and repeated rounds of bargaining will lead under suitable conditions to an
equilibrium in which their relative concessions are equal and minimized.

On the other hand, the K–S scheme may allocate far more utility to an
individual whose welfare is easily improved than to one who is less fortunate.
For example, it may allocate treatment resources to persons suffering from
the common cold to provide them the same fraction of their maximum health
potential as patients with chronic kidney failure. The K–S model offers no
means to prevent this kind of outcome by adjusting the trade-off between
equity and efficiency, as is possible with alpha fairness.

More generally, one can ask why the potential utility that fortune or
fate has granted to some individuals should necessarily be relevant to a fair
allocation. Perhaps fairness sometimes demands a contrasting approach:
rather than rewarding fortunate individuals strictly in proportion to their
potential, we should give greater emphasis to improving the lot of those in
less fortunate circumstances (Dworkin 1981a, 1981b, 2000; Barry 1988).

8. Threshold Criteria with Maximin Fairness

Williams and Cookson (2000) suggest two ways to combine utilitarian
and maximin objectives using threshold criteria. One, based on a utility
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threshold, begins with a maximin criterion but switches to a utilitarian
criterion when the overall utility cost of fairness becomes too great. The
other, based on an equity threshold, begins with utilitarianism and switches
to a maximin criterion when inequity becomes too great.

These proposals were originally defined only for two persons, and it is not
obvious how to extend them to multiple parties. Hooker and Williams (2013)
provide an n-person extension for the utility-threshold criterion, formulate
it as a mixed integer programming problem, study its polyhedral properties,
and apply it to a healthcare provision problem. After summarizing this work,
we suggest an n-person extension of the equity-threshold criterion. It is more
straightforward to formulate and can, in fact, yield a linear programming
model.

An advantage of the threshold criteria is that they regulate the equity-
efficiency trade-off with a parameter ∆ that has a practical meaning in the
n-person models. When a utility threshold is used, parties with utility within
∆ of the worst-off are regarded as disadvantaged and deserving of special
priority. When an equity threshold is used, parties whose utility is already
more than ∆ above the lowest are not regarded as deserving greater utility
if the other utilities remain unchanged.

8.1. Utility-threshold criterion

The 2-person utility-threshold model of Williams and Cookson uses a
maximin criterion when the two utilities are sufficiently close to each other,
specifically |u1 − u2| ≤ ∆, and otherwise it uses a utilitarian criterion. This
is illustrated in Fig. 2, where the feasible set is the area under the curve. The
maximin solution (open circle) requires a substantial sacrifice from person 2.
As a result, the utilitarian solution (black dot) earns slightly more social
welfare and is the preferred choice. The SWF can be written

W (u1, u2) =

{
u1 + u2, if |u1 − u2| ≥ ∆
2 min{u1, u2}+ ∆, otherwise

The maximin criterion is modified from the standard formula min{u1, u2}
to ensure continuity of the SWF as one shifts between the utilitarian and
the maximin objective.

Hooker and Williams (2012) generalize W (u) to n parties as follows.
The utility ui of party i belongs to the fair region if ui − umin ≤ ∆ and
otherwise to the utilitarian region, where umin = mini{ui}. A party whose
utility is in the fair region is considered sufficiently disadvantaged to deserve
priority. The generalized SWF W (u) counts all utilities in the fair region
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Figure 2: Contours for the utility-threshold SWF.

as equal to umin, so that they are treated in solidarity with the worst-off,
and all other utilities as themselves. Copies of ∆ are added to the SWF to
ensure continuity of W (u).

W (u) = (n− 1)∆ +
n∑
i=1

max
{
ui −∆, umin

}
(8)

The parameter ∆ regulates the equity/efficiency trade-off, with ∆ = 0
corresponding to a purely utilitarian objective and ∆ = ∞ to a purely
maximin objective.

Hooker and Williams extend W (u) to problems in which utility is dis-
tributed to groups of different sizes, where each member of the group receives
the same utility. This is useful when allocating resources to geographic
regions, demographic groups, organizations, and so forth. Let si and ui
respectively denote the number of individuals in group i and the utility of
each individual in the group. The function W g(u) considers a group i to be
in the fair region when its per capita ui is within ∆ of umin.

W g(u) =
(∑

i

si − 1
)

∆ +
∑
i

si max
{
ui −∆, umin

}
(9)

Tractable MIP models are formulated for maximizing W (u) and W g(u) sub-
ject to auxiliary constraints ui − uj ≤M required for MIP representability.
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The model for maximizing W g(u) is

max
x,u,δ,v,w,z


(∑

i

si
)
∆ +

∑
i

sivi

∣∣∣∣∣∣∣∣∣∣∣∣

ui −∆ ≤ vi ≤ ui −∆δi, all i

w ≤ vi ≤ w + (M −∆)δi, all i

ui − ui ≤M, all i, j

ui ≥ 0, δi ∈ {0, 1}, all i

(u,x) ∈ S


(10)

The model for individuals is obtained by setting si = 1 for all i. This
is an MILP model when the constraints (u,x) ∈ S are linear. Hooker
and Williams prove that this representation of W g(u) is sharp (i.e., its
continuous relation describes the convex hull of the feasible set) and is
therefore the tightest possible linear model. Sharpness may, of course, be
lost when the constraints (u,x) ∈ S are added. The practicality of the model
was verified with experiments on a healthcare resource allocation instance
of realistic size.

Gerdessen et al. (2018) make several observations regarding properties of
the SWF (8). In particular, the solutions obtained by varying ∆ need not all
lie on the Pareto frontier defined by the convex combination (6) of utilitarian
and maximin objectives. This is in fact to be expected, because the convex
combination balances total utility with only the welfare of the worst-off
party, while (8) takes into account how many parties are disadvantaged (i.e,
in the fair region).

A weakness of the utility-threshold criteria (8) and (9) is that the actual
utility levels of the disadvantaged parties, other than the very worst-off,
have no effect on the value of the SWF. This is illustrated in the 3-person
example of Fig. 3, which shows the contours of W (u1, u2, u3) with ∆ = 3
and u1 fixed to zero. The SWF is constant in the shaded region, meaning
that the utilities allocated to persons 2 and 3 have no effect on social welfare
as measured by W (u), so long as they remain in the fair region. As a result,
many solutions that deliver the same social welfare differ greatly with respect
to equity. This problem is addressed in Section 9 by combining a utilitarian
with a leximax criterion.

It is stated in Karsu and Morton (2015) that W (u) satisfies the Pigou–
Dalton condition, but this is true only for n = 2. Figure 3 provides a
counterexample for n = 3. The move from point A to point B represents
a utility transfer from a better-off party to a worse-off party but strictly
reduces social welfare. YetW (u) satisfies the slightly weaker C–M condition.

Theorem 2. The utility-threshold social welfare function W (u) satisfies the
Chateauneuf–Moyes condition.
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Figure 3: Contours of the utility-threshold SWF W (0, u2, u3). The function is constant
in the shaded region.

The utility-threshold criterion also escapes an anomaly that, as noted
earlier, characterizes alpha fairness. It cannot assign equality the same social
value as arbitrarily extreme inequality. In a 2-person context, for example,
an egalitarian distribution u = (s, s) can have the same social value as a
distribution in which one party has no utility and the other ∆ + 2s, but the
gap can be no greater than this.

8.2. Equity-threshold criterion

Williams and Cookson define the 2-person equity-threshold SWF to
be utilitarian when |u1 − u2| ≤ ∆ and otherwise maximin. In Fig. 4,
the utilitarian solution (open dot) is unfair to person 1, and the welfare-
maximizing solution is more egalitarian (black dot).

W (u1, u2) =

{
2 min{u1, u2}+ ∆, if |u1 − u2| ≥ ∆
u1 + u2, otherwise

We generalize this SWF to n parties in a manner similar to the Hooker–
Williams approach. The main difference is that we now say a utility ui
belongs to the fair region if ui − umin ≥ ∆, otherwise it is in the utilitarian
region. Yet we continue to count utilities in the fair region as equal to umin
and those in the utilitarian region utilities as themselves. This yields the
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Figure 4: Contours for the equity-threshold SWF.

SWFs

W (u) = n∆ +
n∑
i=1

min{ui −∆, umin} (11)

W g(u) =
( n∑
i=1

si

)
∆ +

n∑
i=1

si min{ui −∆, umin} (12)

As before, W g(u) is designed for distribution over groups.
These SWFs have two main effects. One is that a utilitarian criterion

is applied to everyone whose utility is within ∆ of the lowest. The other
is that increasing a utility that is already more than ∆ greater than the
lowest adds nothing to social welfare if the other utilities remain unchanged.
Like the utility-threshold criterion, the equity-threshold criterion can equate
solutions that have very different equity characteristics. This is illustrated
in Fig. 5, where all the solutions in the shaded region have the same social
welfare.

While the utility-threshold SWF satisfies only the Chateauneuf–Moyes
condition, we have the following:

Theorem 3. The equity-threshold SWF W (u) satisfies the Pigou–Dalton
condition and therefore the Chateauneuf–Moyes condition.

Unlike the utility-threshold SWF, the equity-threshold SWF has a simple
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Figure 5: Contours of the equity-threshold SWF W (0, u2, u3). The function is constant
in the shaded region.

linear model.

max
x,u,v,w,z

n∆ +
∑
i

vi

∣∣∣∣∣∣∣∣∣
vi ≤ w ≤ ui, all i

vi ≤ ui −∆, all i

w ≥ 0, vi ≥ 0, all i

(u,x) ∈ S


The formulation for the group SWF W g(u) is the same, except that the
objective function is (∑

i

si

)
∆ +

∑
i

sivi

These formulations are LP problems when linear constraints define S.

9. Threshold Criteria with Leximax Fairness

As pointed out in the previous section, threshold-based combinations
that rely on maximin fairness are sensitive to the utility level of only the
very worst-off party. The resulting SWFs equate distributions that can
differ substantially in their equity characteristics. This tends to become a
problem in practice when the constraint set severely restricts the maximum
utility of some individual. The solution will almost certainly assign this
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person the maximum utility, regardless of what the rest of the problem is
like. The equity situation of other disadvantaged parties become irrelevant,
so long as their utilities are within ∆ of the lowest. As a result, equity
plays almost no role in the solution. This situation can be addressed to
a great degree by replacing maximin fairness with leximax fairness. We
consider two proposals for doing so, both extensions of the Hooker–Williams
approach. One assumes that utility recipients can be ranked by priority in
advance. The other makes no such assumption and obtains a socially optimal
distribution by maximizing a sequence of SWFs, each of which combines
utility and a maximin criterion.

9.1. Predetermined preference order

McElfresh and Dickerson (2018) propose a method for combining utili-
tarian and leximax criteria in the context of kidney exchange. It relies on the
assumption that the parties can be given a preference ordering in advance.
It first maximizes a SWF that combines utilitarian and maximin criteria in
a way that treats the most-preferred party as the worst-off. If all optimal
solutions of this problem lie in the utilitarian region, a utilitarian criterion
is used to select one of the optimal solutions. (Here, a utility vector u is
said to be in the fair region if maxi{ui} −mini{ui} ≤ ∆, and otherwise in
the utilitarian region.) Otherwise a leximax criterion is used for all of the
optimal solutions, subject to the preference ordering (i.e., maximize u1 first,
then u2 etc.). If we index the parties in order of decreasing preference, the
SWF is

W (u) =


nu1, if |ui − uj | ≤ ∆ for all i, j∑
i

ui + sgn(u1 − ui)∆, otherwise (13)

McElfresh and Dickerson state that W (u) has continuous contours, but
this is true only for n = 2. For a counterexample with n = 3, we note that
W (0, 0,∆ + ε) = ε and W (0, ε,∆ + ε) = 2ε −∆ for arbitrarily small ε > 0.
The discontinuity of the SWF raises questions regarding its suitability for
application, since a slight change in the utility distribution could bring about
a large and unexpected change in the measurement of social welfare.

While W (u) satisfies the Pigou–Dalton condition for n = 2 (if one
considers only utility transfers from u2 to u1), it violates both the P–G and
Chateauneuf–Moyes conditions when n = 3. For example, a C–M transfer
that converts (u1, u2, u3) from (ε, 0,∆ + ε) to (ε, ε,∆) reduces social welfare
from 2ε+ ∆ to ε.
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McElfresh and Dickerson maximize W (u) using an algorithm that is
specialized to the kidney exchange problem, but we can state a general
mixed integer model.

max
u,x
w1,w2
y,φ,δ


w1 + w2

∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 ≤ nu1, w1 ≤Mφ

w2 ≤
∑
i

(ui + yi), w2 ≤M(1− φ)

ui − uj −∆ ≤M(1− φ), all i, j
yi ≤ ∆, yi ≤ −∆ +Mδi, ui − u1 ≤M(1− δi), all i

(u,x) ∈ S; φ, δi ∈ {0, 1}, all i


Two additional issues should be considered. One is the need for pre-

assigned priorities. While it is possible to specify in advance a preference
ranking of parties in some applications, such as the kidney exchange prob-
lem, this is not possible in many applications. Also the leximax criterion is
not used until optimal solutions of the SWF are already obtained, and then
applied only to the optimal solutions. It may be preferable to use a leximax
criterion when considering all feasible distributions, rather than those that
are already optimal in some sense.

9.2. A sequence of social welfare functions

Chen and Hooker (2020a, 2020b) avoid assuming a pre-determined pref-
erence ordering of recipients by maximizing a sequence of social welfare
functions W1(u), . . . ,Wn(u). The SWFs successively give priority to the
worst-off recipient, the second worst-off, and so forth, while in each case
considering the impact on total utility by means of a threshold criterion.
The first function W1(u) is identical to the Hooker–Williams function in
(11), and the remainder are defined as follows:

Wk(u) =
k−1∑
i=1

(n− i+ 1)u〈i〉 + (n− k + 1) min
{
u〈1〉 + ∆, u〈k〉

}
+

n∑
i=k

(
u〈i〉 − u〈1〉 −∆

)+
, k = 2, . . . , n

where γ+ = max{0, γ}, and where u〈1〉, . . . , u〈n〉 are u1, . . . , un in nondecreas-
ing order. The parameter ∆ again regulates the efficiency/equity trade-off
by giving preference to individuals whose utility is within ∆ of the lowest,
with greater weight to the more disadvantaged. Very similar SWFs are given
for groups of individuals. It is shown that all of these SWFs are continuous.
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A socially optimal distribution is found by first solving a problem P1

given by

max
u,x

{
W1(u,x)

∣∣∣ |ui − uj | ≤M, all i, j; (u,x) ∈ S
}

(14)

and then solving problems Pk given by

max
u,x

Wk(u,x)

∣∣∣∣∣∣
uij = ūij , j = 1, . . . , k − 1

ui ≥ ūik−1
, ui − ūi1 ≤M, i ∈ Ik
(u,x) ∈ S

 (15)

The indices ij are defined so that uij is the utility determined by solving Pj .
In particular, uij is the utility with the smallest value among the unfixed
utilities in an optimal solution obtained by solving Pj . Thus

ij = arg min
i∈Ij

{
u

[j]
i

}
where u[j] is an optimal solution of Pj and Ij = {1, . . . , n} \ {i1, . . . , ij−1}.
We need only solve Pk for k = 1, . . . ,K + 1, where K is the largest k for
which ūik ≤ ūi1 + ∆. The solution of the social welfare problem is then

ui =

{
ūi for i = i1, . . . , iK−1

u
[K]
i for i ∈ IK

The MILP model for solving P1 with groups is (10). Using notation
similar to that for the goal programming model (5), the MILP formulation
for solving Pk with groups, k ≥ 2, is

max
x,u,δ,ε
v,w,τ,z


z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z ≤
(∑

i∈Ik si − 1
)
τ +

∑
i∈Ik sivi

0 ≤ vi ≤Mδi, i ∈ Ik
vi ≤ ui − ûi1 −∆ +M(1− δi), i ∈ Ik

τ ≤ ûi1 + ∆, τ ≤ w, w ≥ ûi1
w ≤ ui ≤ w +M(1− εi), i ∈ Ik

ui − ûi1 ≤M, i ∈ Ik∑
i∈Ik εi = 1; δi, εi ∈ {0, 1}, i ∈ Ik

(u,x) ∈ S


(16)

While this is not a sharp model in general for k ≥ 2, Chen and Hooker
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identify valid inequalities that can strengthen the linear relaxation of Pk:

zk ≤
∑
i∈Ik

siui (17)

zk ≤
(∑
j∈Ik

si

)
uj + β

∑
j∈Ik\{i}

sj(uj − ūik−1
), i ∈ Ik (18)

where

β =
M −∆

M − (ūik−1
− ūi1)

=
(

1− ∆

M

)(
1−

ūik−1
− ūi1
M

)−1

Formulations (10) and (16) are used to solve healthcare resource and earth-
quake shelter location problems of realistic size in a matter of seconds for a
given value ∆.

We have already seen that W1(u) can violate the Pigou-Dalton condition
but satisfies the Chateauneuf–Moyes condition. The same is true for Wk(u)
for k ≥ 2. These functions fail Pigou-Dalton in counterexamples similar to
Fig. 7. Regarding the C–M condition, we have the following:

Theorem 4. The social welfare functions Wk(u) satisfy the Chateauneuf–
Moyes condition for k = 2, . . . , n.

Although each Wk(u) satisfies the C–M condition, we show that feasible
sets can be contrived in which a C–M transfer may not transform a socially
optimal solution to another socially optimal solution. For example, suppose
n = 4, ∆ = 5, and the feasible set consists only of the three vectors on the
left:

u1 = (1, 2, 8, 9) (24, 15, 27, 35)
u2 = (2, 3, 7, 8) (24, 18, 32, 39)
u3 = (1, 2, 3, 12) (25, 16, 22, 28)

The corresponding values (W1(u), . . . ,W4(u)) are shown on the right. Dis-
tribution u2 results from applying a C–M transfer to the socially optimal
distribution u1, but u2 is not socially optimal because u1 = 2 in no optimal
solution of P1. Rather, the unique optimal solution of P1 is u3, in which
u1 = 1. This situation can occur when a socially optimal distribution u is
not an optimal solution of P1. In the example, u1 is not an optimal solution
of P1. It is unclear whether this should be seen as a weakness of the Chen–
Hooker approach, or as evidence of the inherent complexity of balancing
equity and efficiency.
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10. Statistical Fairness Metrics

The mathematical formulation of equity has become a major issue in the
field of machine learning, because machine learning algorithms are employed
to make high-stake decisions and require precisely coded criteria for assessing
whether those decisions are fair. As summarized in Mehrabi et al. (2019),
fairness in machine learning seeks to eliminate “any prejudice or favoritism
toward an individual or a group based on their inherent or acquired char-
acteristics.” One well-known example that motivates extensive interest in
machine learning fairness is the series of research efforts on whether the
COMPAS software, supported by a recidivism risk prediction algorithm, is
biased against African-Americans (Angwin et al. 2016, Dieterich et al. 2016,
Chouldechova 2017). The focus of fair machine learning has been almost
entirely on mitigating this kind of bias and ensuring that certain minority
groups, often defined by law, receive fair treatment. The AI community has
seized upon traditional statistical measures of classification error to detect
bias, so that it can be avoided when possible.

In a typical scenario, the machine makes yes–no decisions as to who
receives a certain benefit, such as a mortgage loan, a job interview, parole,
and so forth. A large training set is used to train the machine to select
appropriate individuals as reliably as possible, based on various features
they possess. The aim is to predict who will pay their mortgage, become
a valued employee, or avoid future crimes. These tasks conventionally use
supervised learning methods to train predictive models from labelled data.
In particular, majority of the literature on fair machine learning studies
fairness in classification, and we focus on this setup as well.

A fairness test compares decisions for a minority or protected group with
those for the remainder of the population. Four outcomes are possible for
each individual: a true positive (the machine correctly selects the individual
for a benefit), a false positive (it incorrectly selects), a true negative (it
correctly rejects), and a false negative (it incorrectly rejects). We will refer
to the number of individuals in these four groups, respectively, as TP, FP,
TN, and FN. Various metrics involving these four statistics are compared
between the minority group and the rest of the population, each yielding a
measure of parity between the groups.

We will set ai = 1 when individual i should be selected, and ai = 0
otherwise. We let N be an index set for individuals in the protected group,
and N ′ for those in the remainder of the population. Rather than a vector u
of utilities distributed across individuals, we have a vector δ = (δ1, . . . , δn) of
individual 0–1 decisions, where δi = 1 indicates that individual i is selected.
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We can view social welfare as a function W (δ) of these decisions rather than
a function W (u) of utilities. Of course, one could view δ as a simplified
representation of utilities in which each individual receives utility 0 or 1.
Typically, bounds are put on W (δ) rather than maximizing W (δ), thus
leading to an optimization problem (3) that maximizes some other objective
subject to these bounds.

Unfortunately, it is far from clear how the fairness of a decision vector δ
should be measured. There are a wide variety of classification error metrics,
many of which are pairwise incompatible, with no consensus on which is
most suitable for any given application (e.g. Kleinberg et al. 2016, Friedler
et al. 2016). In addition, the focus on classification error affords a rather
narrow perspective on the fairness problem, because the underlying concern
is generally distributive justice in a broader sense. Discrimination against
a minority group is normally seen as undesirable because it results in an
unjust distribution of utilities. Finally, there is no obvious criterion for
which groups should be designated as protected, unless one is content to
recognize only those sanctioned by law.

The AI community might well consider the option of training machines
to maximize a more comprehensive measure of social welfare, such as one of
those discussed in previous sections, to better align fairness concepts with
social well-being. We are already beginning to see some movement in this
direction (Heidari et al. 2018, Corbett-Davies and Goel 2018, Heidari et al.
2019, Hu and Chen 2020). The classification vector δ can be viewed as a set
of decision variables on which utilities depend, perhaps as given by a utility
function u = U(δ), and social welfare assessed by a function W (u) as in
model (2). In the simplest case, one could set Ui(δi) = ciδi+di, where ci+di
is the utility experienced by individual i if selected, and di if not selected.
Of course, legal requirements may dictate that bounds are placed directly
on one of the parity measures.

In any event, the discussion below is restricted to fairness metrics W (δ)
defined directly in terms of the decision vector δ. We consider four of the
best known metrics: demographic parity, equalized odds, accuracy parity,
and predictive rate party. For brevity, we refer to individuals in the pro-
tected group as minority individuals, and those in the remainder of the
population as majority individuals. We do not discuss the Pigou-Dalton
and Chateauneuf–Moyes conditions in this context, because they do not
appear to be meaningful for 0–1 decision vectors.

We also omit some of the fairness metrics that have been proposed
for machine learning. Most of them are surveyed in Verma and Rubin
(2018) and are similar to those discussed here. Beyond these, the Matthews
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correlation coefficient (Matthews 1975, Chicco and Jurman 2020) is often
regarded as the most comprehensive measure of classification accuracy, but
it corresponds to a complicated, nonconvex SWF that could be quite difficult
to optimize. Counterfactual fairness (Kusner et al. 2017, Russell et al.
2017) aims to select minority applicants with the same probability that
would apply if they had been majority applicants. For example, financial
irresponsibility of a mortgage applicant, which cannot be directly observed,
may correlate with residence in a low-income neighborhood. This may lead
to bias against minority applicants whose residence in the neighborhood is
due to social conditions that have nothing to do with financial irresponsibil-
ity. Counterfactual fairness strives to avoid this confounding of factors by
constructing a causal network and using Bayesian inference to isolate the
effect of financial responsibility (Pearl 2000, Pearl et al. 2016). It is unclear
at this point how to incorporate this scheme into an optimization model.
Beyond fairness in classification and supervised learning, recent research
has also seen progress on fairness in unsupervised learning (e.g., Abraham
et al. 2019, Deepak and Abraham 2020) and reinforcement learning (e.g.,
Weng 2019, Siddique et al. 2020). These machine learning frameworks are
generally difficult to interpret as optimization models and tend to require
customized fairness definitions.

10.1. Demographic parity

The simplest bias metric is based on demographic parity, also known as
proportional/statistical parity. It is achieved when the fraction of minor-
ity individuals selected is the same as the fraction of majority individuals
selected. It is defined by comparing the ratio

(TP + FP)/(TP + FP + TN + FN)

across the two groups. The associated social welfare function is W (δ) =
1− |B(δ)|, where

B(δ) =
1

|N |
∑
i∈N

δi −
1

|N ′|
∑
i∈N ′

δi

Thus 0 ≤W (δ) ≤ 1, and complete parity is obtained when W (δ) = 1. This
SWF is easily linearized and therefore gives rise to an MILP problem when
the problem constraints are linear:

min
δ,x,w

{
w
∣∣∣ − w ≤ B(δ) ≤ w, (δ,x) ∈ S, δ ∈ {0, 1}n

}
(19)
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Since Dwork et al. (2012) proposed the use of demographic parity for
fairness in classification, it has been widely studied and applied. Exist-
ing classification algorithms seeking demographic parity guarantees almost
never impose the criterion exactly via the formulation in (19) due to the
integer variables δ. Instead, one strategy is to use continuous relaxations
of the exact definition B(δ). For instance, Zafar et al. (2017) define a
convex proxy for demographic parity by replacing the discrete variables
δ with the continuous decision boundaries of the trained model, and Ol-
fat and Aswani (2018) substitute the decision boundaries with covariance
matrices to formulate a stronger but non-convex proxy of demographic
parity. Another strategy is to treat a given classification algorithm as a
black box and design separate pre-processing or post-processing schemes to
attain fairness guarantees. As an example, Agarwal et al. (2018) develop
a systematic approach that reduces fair classification to a sequence of cost-
sensitive classification, and derive theoretical guarantees on the generated
classifier for a variety of fairness measures including demographic parity,
equalized odds and accuracy parity.

Despite its popularity, critics of demographic parity view the measure
as unsuitable for most practical purposes because it requires strict equality
of outcomes. For example, it discriminates against a minority group that
happens to be to be more qualified for loans than the majority on the
average. It requires that a minority individual receive a loan with no greater
probability than a majority individual.

10.2. Equalized odds

The equalized odds metric is based on two related but distinct criteria.
One is that the fraction of qualified minority persons selected is the same
as the fraction of qualified majority persons selected (Hardt et al. 2016).
The other is that the fraction of unqualified minority persons selected is the
same as the fraction of unqualified majority persons selected (Zafar et al.
2017). The former is also known as equality of opportunity and is defined
by comparing the ratio TP/(TP + FN). It has the SWF W (δ) = 1− |B(δ)|
across the two groups, where

B(δ) =

∑
i∈N aiδi∑
i∈N ai

−
∑

i∈N ′ aiδi∑
i∈N ′ ai

(20)

The latter criterion is based on the ratio FP/(FP + TN) and again has the
SWF W (δ) = 1− |B(δ)|, but with

B(δ) =

∑
i∈N (1− ai)δi∑
i∈N (1− ai)

−
∑

i∈N ′(1− ai)δi∑
i∈N ′(1− ai)

(21)
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Both are easily linearized and give rise to the optimization problem (19).
Similar to the case of demographic parity, these exact formulations are rarely
used to train classification models. Hardt et al. (2016) design post-processing
schemes to adjust the outcomes of unfair classifiers to attain equalized odds
guarantees. Zafar et al. (2017) study an in-processing perspective and
propose tractable proxies for (20) and (21) by replacing δ with continuous
approximations.

10.3. Accuracy parity

The two-sided evaluation in equalized odds can be obviated simply by
measuring the fraction of predictions that are accurate, which is the ratio

(TP + TN)/(TP + TN + FP + FN)

The SWF is W (u) = 1− |B(δ)|, where

B(δ) =
1

|N |
∑
i∈N

(
aiδi + (1− ai)(1− δi)

)
− 1

|N ′|
∑
i∈N ′

(
aiδi + (1− ai)(1− δi)

)
The optimization problem is again (19). Accuracy parity is less studied than
the previous two measures, perhaps because it does not distinguish between
true positives and true negatives. It is less often used in the design of fair
classifiers than as a tool to evaluate existing classifiers. For example, Berk
et al. (2018) list accuracy parity as one of the meaningful fairness definitions
in criminal justice risk assessment.

10.4. Predictive rate parity

When one wishes to compare what fraction individuals selected from
each group should have been selected, the relevant measure is predictive
rate parity, defined as TP/(TP+FP). The SWF is W (δ) = |1−B(δ)|, with

B(δ) =

∑
i∈N aiδi∑

ı∈N δi
−
∑

i∈N ′ aiδi∑
ı∈N ′ δi

The optimization model is again (19), but it poses a difficult optimization
problem because variables occur in the denominator. A change of variables
similar to that in linear–fractional programming is unhelpful for two reasons.
One is that the two ratios in B(δ) give rise to two scaling factors t, t′ that
create a nonconvex bilinear term tt′ even in a linear constraint set. The
other is that rescaling destroys the integrality of the 0–1 variables δi. We

36



therefore appear to have an irreducibly difficult problem in nonlinear integer
programming.

Predictive parity is primarily considered in risk assessment contexts, such
as, recidivism prediction (Dieterich et al. 2016, Chouldechova 2017), child
maltreatment screening (Chouldechova et al. 2018). In any case, it is unclear
why predictive rate parity would be preferable in a given application than
one of the measures discussed above. Accuracy parity, for example, would
seem to be at least as suitable, and it creates no computational difficulties.

11. General Guidelines

There is no one best approach to formulating equity and fairness in
an optimization model. Fairness is a collection of concepts, many of them
rather vague, that can be found in popular culture, academic literature,
and legal settings. Nonetheless, the various formulations surveyed here have
characteristics that may be more or less suitable for the type of fairness one
wishes to achieve in a given context. We conclude with an overview of these
characteristics to assist one in exploring the equity landscape. We encourage
the reader to consult the more detailed discussion provided earlier, and
perhaps cited literature, before settling on a choice of model for a particular
application.

Inequality metrics (Section 4) are of limited applicability because they
take no account of absolute welfare levels. Even if relative welfare is all
that matters, there may be an ethical difference between a distribution
with extremes at the bottom end and one with extremes at the top end,
and inequality measures do not distinguish these. Nonetheless, inequality
measures can be appropriate if they truly represent the only criterion of
interest. The relative range suits applications in which one simply wants
to avoid extreme outliers. The relative mean deviation measures dispersion
across the entire distribution. It is proportional to the Hoover index, which
is the fraction of total utility that must be redistributed to achieve perfect
equality. The coefficient of variation and Gini coefficient have the advantage
that they are widely used, and there is a general appreciation of what
they say about a distribution. All of these measures but the coefficient
of variation have simple linear models. The nonlinearity of the latter seems
an unwarranted complication, unless something about an application calls
for this particular measure.

Fairness criteria can reflect concern for the disadvantaged as well as
inequality (Section 5). A famous example is the Rawlsian difference prin-
ciple, which gives rise to the maximin criterion. It is backed by a highly
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developed social contract argument that can have considerable intuitive
appeal. However, the principle is intended only for the design of social
institutions and can have surprising implications when applied to welfare
distribution in general. For example, if improving the welfare of certain
individuals is very expensive, perhaps due to incurable disease, the maximin
principle can require a massive resource transfer that reduces everyone else
to the same level of suffering. Limiting the transfer does not help, because
it reduces utility even further and, worse, can allow some resources to go
unused. The latter difficulty, but only it, can be remedied by extending
the maximin to a leximax principle. A very different option is to use the
McLoone index, a statistical criterion that measures the extent to which
those in the lower half of the utility distribution are deprived. It appears in
discussions of educational equality and other public policy matters.

Pure fairness measures can be appropriate when there is no need to
balance fairness against the overall welfare of the population. However, prac-
tical situations frequently call for both equity and efficiency to be explicitly
considered. One way to strive for both is simply to maximize a convex
combination of the two (Section 6). Yet it is highly unclear how to adjust
their relative weights, particularly when they are measured in different units.
Efficiency is measured in units of utility, while most of the equity objectives
discussed so far are dimensionless.

Alpha fairness and Kalai-Smorodinsky bargaining offer more principled
solutions to the equity-efficiency trade-off (Section 7). The parameter α in
alpha fairness regulates the trade-off on a scale that ranges from a purely
utilitarian to a purely maximin criterion. Axiomatic and bargaining justifi-
cations have been offered for this SWF, particularly for α = 1 (proportional
fairness, or the Nash bargaining solution). However, these justifications are
perhaps less relevant to practice than the mere fact that one can continu-
ously adjust the trade-off to suit the occasion. Alpha fairness has, in fact,
seen fairly wide employment in engineering, despite the nonlinearity of the
SWF. Yet while α can be interpreted in terms of welfare-preserving utility
transfers, it is still unobvious how to justify any particular choice for its
value. Also, alpha fairness can assign the same social welfare to equality as
to extreme inequality (when α ≥ 1), although this becomes a practical issue
only for certain types of problem constraints.

The Kalai-Smorodinsky solution avoids this last issue entirely but poses
another. It is suitable for bargaining situations when the parties concerned
see equal relative concessions to be fair, as when buyer and seller negotiate
a price, or labor and management negotiate wages. However, it may be
unsuitable when some individuals have less utility potential due to physi-
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cal impairment or some other factor beyond their control. In such cases,
fairness may require special consideration for those who suffer misfortune,
as in several other schemes considered here. Also K–S bargaining offers no
parameter to adjust the equity-efficiency trade-off, and it violates both the
Pigou-Dalton and Chateauneuf-Moyes conditions.

Threshold SWFs (Section 8) combine utilitarian and maximin criteria
using a parameter ∆ that is easier to interpret in practice than the α of alpha
fairness. They also avoid the alpha fairness model’s anomaly of sometimes
regarding equality as ethically equivalent to extreme inequality. A utility-
threshold model is suitable when equity is the initial concern, but one does
not wish to pay too high a cost for fairness. This may occur, for example, in
health-related or politically sensitive contexts. The parameter ∆ is chosen
so that disadvantaged parties whose utility is with ∆ of the lowest are seen
as deserving special priority. The SWF satisfies the C–M condition and has
a mixed integer model that is readily solved in practice. An equity-threshold
model is better suited for situations in which efficiency is the initial concern,
but one does not want to create excessive inequality. This may be the
situation in traffic management, telecommunications, or disaster recovery.
In this context, the parameter ∆ has a somewhat different meaning: it
is chosen in such a way that one wishes to recognize no social benefit in
improving the lot of well-off individuals whose utility is already more than
∆ greater than the lowest, if the other utilities remain unchanged. The SWF
satisfies both the P–G and C–M conditions and has an easily solved linear
model.

Threshold models that combine efficiency with the maximin criterion
inherit the tendency of the latter to ignore the actual utility levels of the
disadvantaged other than the very worst-off. This may result in less sensitiv-
ity to equity than desired, particularly when the utility of some individuals is
severely limited a priori by the constraint set. Two utility-threshold models
address this issue by combining efficiency with a leximax rather a maximin
criterion (Section 9). One assumes a predefined preference ordering for the
parties, which may be suitable for some situations, such as organ transplants.
However, the SWF is discontinuous, and it satisfies neither the P–G nor the
C–M conditions. Another model makes no assumptions regarding prefer-
ence, but it maximizes a sequence of SWFs to balance efficiency and leximax
fairness. It uses the same parameter ∆ as maximin-based utility-threshold
model. The sequential SWFs are continuous, and they again satisfy the C–M
condition and have mixed integer models that are readily solved in practice.
This approach yielded markedly superior solutions, relative to a maximin-
based threshold model, in a healthcare problem where the utility of some

39



patients is severely limited by poor prognosis, and an earthquake shelter
location problem in which the utility of some neighborhoods is severely
limited by their remoteness from all of the potential shelter locations. At
this writing, no equity-threshold models have been developed to combine
efficiency with leximax fairness, although it appears that this could be done
along similar lines.

Statistical bias measures (Section 10) are widely used in machine learning
to judge whether a protected subpopulation, such as a minority group, is
treated fairly. These measures do not attempt to take account of overall
welfare, and they assess distributive justice in a rather restricted sense.
Rather than evaluate a distribution of utilities across the population, they
examine how yes and no decisions are distributed between the protected
and control groups, as for example in the granting of mortgage loans, job
interviews, school admissions, or parole. Many of these statistical metrics are
pairwise incompatible, and there is no consensus as to which are appropriate
for a given application. Indeed, most were originally developed to measure
predictive accuracy, not fairness.

To take some examples, demographic parity compares the fraction of
individuals accepted in the two groups. It is often too strict because it fails
to recognize group differences in qualifications. Equalized odds compares the
fraction of qualified (or unqualified) individuals accepted. Accuracy parity
compares the fraction of individuals correctly classified (by acceptance or
rejection). Predictive rate parity compares the fraction of selected individu-
als who are correctly selected. The computational tractability of minimizing
bias varies widely. The first three SWFs mentioned here have easy linear
models. The fourth poses an extremely difficult mixed integer/nonlinear
programming problem, which hardly seems worth solving, because there is
no clear reason for using this metric rather than another. The Matthews
correlation coefficient, perhaps the most comprehensive bias measure, is
even more challenging computationally. Counterfactual fairness is a very
different concept based on causal networks, and its formulation as a social
welfare maximization problem is currently a research issue.

The standard approach to fairness in machine learning is to maximize
predictive accuracy subject to a constraint on bias. Yet this not only relies
on a narrow conception of utility (by identifying it with predictive accuracy),
but it provides no criterion for balancing utility and equity. Equity itself
is assessed only with respect to a protected group than across an entire
utility distribution. Indeed, it is unclear on what principle groups should be
selected for protection, unless one is content to consider only those mandated
by law. An alternative approach would be to maximize social welfare more
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broadly, rather than predictive accuracy, when training a neural network
or building a rule base, perhaps using one of the SWFs surveyed here.
The SWF could reflect the utilitarian benefits of accuracy as well as other
utilitarian and equity-oriented factors.
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Appendix

Proof of Theorem 1. Consider a utility distribution u = (u1, . . . , un)
with u1 ≤ · · · ≤ un, and let ũ = um be the median. There are three types of
C–M utility transfers, illustrated in Fig. 6: (a) ` < h ≤ m, (b) ` ≤ m < h,
and (c) m < ` < h. Since a C–M transfer does not reorder the utilities, the
new value of um is the median. If we let U =

∑m
i=1 ui, the McLoone indices

before and after the transfer are as in Table 4. It is easily checked that,
in each case, the transfer does not reduce the index. This follows directly
from algebraic manipulation in cases (a) and (b), and from the fact that
U ≤ mum in case (c).

Proof of Theorem 2. Let t(u) denote the number of utilities in the
fair region for a given u. We can distinguish three types of C–M utility
transfer, illustrated in Fig. 7: (a) ` < h ≤ t(u), (b) ` ≤ t(u) < h, and (c)
t(u) < ` < h. The resulting utility gain by individuals 1, . . . `, and loss by
individuals h, . . . , n, are indicated in Table 5. It is clear on inspection of
Fig. 7 that the gain is at least ε in each case, and the loss never more than
ε. The C-M condition is therefore satisfied.

Proof of Theorem 3. Given a utility distribution u, let u′ be the result of
a Pigou-Dalton transfer of utility ε > 0 from uh to u`, where u`+ ε ≤ uh− ε.
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Figure 6: Illustration of proof of Theorem 1.

Table 4: McLoone indices before and after a C–M transfer.

Case Before transfer After transfer

(a)
U

mum

U + (n−m)ε/(n− h+ 1)

m
[
um − ε/(n− h+ 1)

]
(b)

U

mum

U + ε

mUm

(c)
U

mum

U +mε/`

m
(
um + ε/`

)
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Figure 7: Illustration of proof of Theorem 2.

Table 5: Verifying the Chateauneuf–Moyes condition for a utility-threshold SWF

Case Gain Loss

(a)
t(u)

`
ε > ε

n− t(u)

n− h+ 1
ε < ε

(b)
t(u)

`
ε > ε ε

(c) ε ε

There are three cases to consider:

(a) u`, uh ≤ umin + ∆

(b) u`, uh > umin + ∆

(c) u` ≤ umin + ∆ and uh > umin + ∆

Case (c) breaks down into three subcases, where the following relations hold
as well:

(c1) u` + ε ≤ umin + ∆ and uh > umin + ∆

(c2) u` + ε, uh − ε ≤ umin + ∆

(c3) u` + ε, uh − ε > umin + ∆

Proof of Theorem 4. It is clear that a sufficiently small utility-invariant
transfer satisfies the C-M condition when k > t(u), because in this case
Fk(u) is simply utilitarian. We therefore need only consider the six cases
illustrated in Fig. 8, in which k ≤ t(u). It is convenient to write Fk(u) in
the following form:

Fk(u) = t(u)u〈1〉 +
k∑
i=2

(n− i+ 1)u〈i〉 +
n∑

i=t(u)+1

(u〈i〉 −∆)
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Table 6: Verifying the Pigou-Dalton condition for an equity-threshold SWF

Case W (u) W (u′)

(a) (n− 2)∆ + u` + uh + U (n− 2)∆ + u` + uh + U

(b) n∆ + 2umin + U n∆ + 2umin + U

(c1) (n− 1)∆ + u` + umin + U (n− 1)∆ + u` + umin + ε+ U

(c2) (n− 1)∆ + u` + umin + U (n− 2)∆ + u` + uh + 2ε+ U

(c3) (n− 1)∆ + u` + umin + U (n− 1)∆ + 2umin + U

The resulting gain by individuals 1, . . . `, and loss by individuals h, . . . , n,
are indicated in Table 7. In cases (b)–(f), it is clear on inspection of Fig. 8
that the gain is more than ε in each case, and the loss never more than ε.
In case (a), we note first that the gain can be written

n− `− 1

2
− n− t(u)

`

To show that the loss is no greater than the gain, it suffices to show this
when h = ` + 1, since h ≥ ` + 1 and the loss is nonincreasing with respect
to h. Thus it suffices to show

n− `− 1

2
− n− t(u)

`
≥ 1

n− `

( k∑
i=`+1

(n− i+ 1) + n− t(u)
)

Since k ≤ t(u) and each term of the summation is at most n− `, it suffices
to show

n− `− 1

2
− n− t(u)

`
≥
(
t(u)− `

)
(n− `) + n− t(u)

n− `
Rearranging, we obtain(

n− t(u)
)(1

`
+

1

n− `
− 1
)
≤ `+ 1

2
(1)

This inequality is clearly satisfied when the following is false:

1

`
+

1

n− `
≥ 1 (2)

We therefore assume (2) is true. Since (1) is clearly satisfied when ` = 1, we
suppose ` ≥ 2, in which case (2) implies n < `2/(` − 1). Since ` < h ≤ n,
we can state

`+ 1 ≤ n < `2

`− 1
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or `2 − 1 ≤ n(` − 1) < `2. Since n and ` are positive integers, this implies
n = `+ 1, in which case (1) reduces to

`+ 1− t(u)

`
≤ `+ 1

2

This holds because t(u) ≥ `+ 1, and the theorem follows. �
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Figure 8: Illustration of proof of Theorem 4.
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Table 7: Verifying the Chateauneuf–Moyes condition for Fk(u)

Case Gain Loss

(a)
1

`

(
t(u) +

∑̀
i=2

(n− i+ 1)
)
ε

1

n− h+ 1

( k∑
i=h

(n− i+ 1) + n− t(u)
)
ε

(b)
1

`

(
t(u) +

∑̀
i=2

(n− i+ 1)
)
ε ≥ t(u)

`
ε > ε

n− t(u)

n− h+ 1
ε < ε

(c)
1

`

(
t(u) +

k∑
i=2

(n− i+ 1)
)
ε ≥ t(u)

`
ε > ε

n− t(u)

n− h+ 1
ε < ε

(d)
1

`

(
t(u) +

∑̀
i=2

(n− i+ 1)
)
ε ≥ t(u)

`
ε > ε

n− h+ 1

n− h+ 1
ε = ε

(e)
1

`

(
t(u) +

k∑
i=2

(n− i+ 1)
)
ε ≥ t(u)

`
ε > ε

n− h+ 1

n− h+ 1
ε = ε

(f)
1

`

(
t(u) +

k∑
i=2

(n− i+ 1) + `− t(u)
)
ε ≥ ε n− h+ 1

n− h+ 1
ε = ε
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