
Job Sequencing Bounds from Decision Diagrams

J. N. Hooker

Carnegie Mellon University
June 2017

Abstract. In recent research, decision diagrams have proved useful for
the solution of discrete optimization problems. Their success relies on
the use of relaxed decision diagrams to obtain bounds on the optimal
value, either through a node merger or a node splitting mechanism. We
investigate the potential of node merger to provide bounds for dynamic
programming models that do not otherwise have a practical relaxation,
in particular the job sequencing problem with time windows and state-
dependent processing times. We prove general conditions under which a
node merger operation yields a valid relaxation and apply them to job
sequencing. Computational experiments show that, surprisingly, relaxed
diagrams prove the optimal value when their size is only a small fraction
of the size of an exact diagram. On the other hand, a relaxed diagram of
fixed size ceases to provide a useful bound as the instances scale up.

1 Introduction

Decision diagrams have historically been used for circuit design and verification
[1, 12, 22, 23] and a variety of other purposes [24, 27]. Recent research indicates
that decision diagrams provide an alternative approach to discrete optimization
and constraint solving [2, 9, 14]. Of special interest to optimization is the fact that
decision diagrams are well suited to dynamic programming (DP) formulations,
because the diagrams are essentially state transition graphs. Viewing DP from
the perspective of decision diagrams opens the door to new techniques for solving
DP problems, such as branch-and-bound methods [9].

A key element of this development is the use of relaxed decision diagrams to
derive a bound on the optimal value. Optimization bounds are useful not only in
branch-and-bound methods, but for assessing the quality of solutions obtained
by heuristics, and perhaps for proving their optimality. Because the exact (non-
relaxed) diagram tends to grow exponentially with the number of variables, it is
vital to find relaxed diagrams of limited size.

Two methods for constructing relaxed decision diagrams of limited size were
introduced in [2]: node merger and node splitting. Node merger reduces the size
of the diagram by introducing some infeasible solutions. Node splitting works in
the opposite direction: by beginning with a diagram that represents all possible
solutions and creating new nodes to exclude some infeasible solutions.

We investigate here the potential for node merger to relax DP formulations,
particularly those for which good relaxations are not currently available. While



2 J. N. Hooker

a great advantage of DP is that it does not presuppose convexity, linearity,
or even a closed-form description of the problem, this very generality often
makes it difficult to find a good relaxation. The problem may also be difficult to
solve due to the exponential growth of the state space, known as the “curse of
dimensionality.”

We focus on a job sequencing problem in which processing times are state-
dependent. Due to this state dependency, the problem does not have a practical
mixed-integer or other formulation for which a relaxation is readily available. We
wish to determine whether relaxed decision diagrams of limited size can provide
a useful bound and therefore assist in finding an optimal solution.

Node merger has not previously been applied to job sequencing problems, or
apparently to any problems for which no effective relaxation is known. While
various types of sequencing problems are solved by decision diagrams in [14],
the relaxed diagrams are created by node splitting rather than merger. It is
therefore important to investigate the potential of node merger as a relaxation
technique for DP. Because the job sequencing problem studied here is a simple
representative of a broad class of sequencing problems, the results could have
wider implications.

After a brief review of previous work, we begin with a description of exact and
relaxed decision diagrams and how they relate to DP, using the job sequencing
problem as an example. We then prove general sufficient conditions under which
node merger yields a valid relaxed diagram, since conditions of this kind have
never appeared in the literature. They allow us to show that a proposed merger
rule for the job sequencing problem produces a valid relaxation. We then describe
alternative heuristics for selecting nodes to merge, because an effective merger
heuristic is essential to obtaining tight bounds.

We report computational experiments that show the somewhat surprising
result that bounds obtained from relaxed diagrams reach the optimal value
rather quickly, when the diagrams are only a small fraction of the size of an exact
diagram. This allows relaxed diagrams to prove the optimality of a heuristically
obtained solution in much less time than would otherwise be necessary. On the
other hand, relaxed diagrams of any given fixed size cease to prove a useful bound
as the instances scale up. In the conclusion, we suggest a research direction that
addresses this issue.

2 Previous Work

Decision diagrams were first proposed as an optimization method by [16, 20].
Other early applications to optimization include cut generation for integer pro-
gramming [4], post-optimality analysis [15, 16], and vertex and facet enumer-
ation [5]. The idea of a relaxed decision diagram was introduced by [2] for
constraint programming. Subsequent applications are described by [6, 17–19].
Relaxed diagrams were used to obtain optimization bounds in [7, 11]. Branching
within a relaxed diagram was introduced by [9]. Connections between decision
diagrams and deterministic dynamic programming, including nonserial dynamic



Job Sequencing Bounds from Decision Diagrams 3

programming, are discussed in [21]. A comprehensive survey of decision diagrams
as an optimization technique appears in [8].

Relaxation of a decision diagram is superficially related to state space relax-
ation in dynamic programming [3, 13, 25, 26], but there are several fundamental
differences. A relaxed decision diagram is created by splitting or merging nodes
rather than mapping the state space into a smaller space. It can be tightened
by filtering techniques. It is constructed dynamically as the diagram is built,
rather than by defining a mapping a priori. It uses the same state variables
as the exact formulation, which allows the relaxed diagram to be used as a
branching framework for an exact branch-and-bound method. The relaxation
can be calibrated to provide a bound of any desired quality, up to optimality,
simply by adjusting the maximum width to be observed by the diagram while
it is created.

3 Decision Diagrams

For our purposes, a decision diagram can be defined as a directed, acyclic
multigraph in which the nodes are partitioned into layers. Each arc of the graph
is directed from a node in layer j to a node in layer j+1 for some j ∈ {1, . . . , n}.
Layers 1 and n + 1 contain a single node, namely the root r and the terminus
t, respectively. Each layer j is associated with a finite-domain variable xj ∈ Dj .
The arcs leaving any node in layer j have distinct labels in Dj , representing
possible values of xj at that node. A path from r to t defines an assignment
to the tuple x = (x1, . . . , xn) as indicated by the arc labels on the path. The
decision diagram is weighted if there is a length (cost) associated with each arc.

Any discrete optimization problem with variables x1, . . . xn and a separable
objective function

∑
j fj(xj) can be represented by a weighted decision diagram.1

The diagram is constructed so that its r–t paths correspond to the feasible
solutions of the problem, and the cost of an arc with label vj leaving layer j is
fj(vj). The length (cost) of any r–t path is the objective function value of the
corresponding solution. If the objective is to minimize, the optimal value is the
length of a shortest r–t path.

Many different diagrams can represent the same problem, but for a given
variable ordering, there is a unique reduced diagram that represents it [12, 21]. A
diagram is reduced when for any pair of nodes u, u′ in a given layer j, the set of
u–t paths and their costs is different from the set of u′–t paths and their costs.
That is, the two sets correspond to different sets of assignments to xj , . . . , xn or
different costs.

As an example, consider a small instance of the job sequencing problem with
time windows (Table 1). The jobs must be sequenced so that each job j begins
processing no earlier than the release time rj and requires processing time pj . We
assume that for a given sequencing, the start time of job j is sj = max{rj , si+pi},
where i is the immediately preceding job in the sequence, and the first job

1 Problems with nonseparable objective functions can also be represented, as described
in [21], but to simplify exposition we omit this possibility.



4 J. N. Hooker

Table 1. A small instance of a job scheduling problem.

j rj pj dj

1 0 3∗ 4
2 1 2 3
3 1 2 5

∗2 when job 2 has previously been processed.

starts at its release time. The objective is to minimize total tardiness, where the
tardiness of job j is max{0, sj + pj − dj}, and dj is the job’s due date.

We can make the processing time state-dependent by supposing that it
depends on which jobs have already been processed. This frequently occurs in
practice, as processing one job may involve the fabrication of parts that can
be used when processing another job. In the example, we suppose that the
processing time p1 for job 1 is 2 (rather than 3) when job 2 has been processed.

Figure 1 shows a reduced decision diagram that represents the problem.
Variable xj represents the jth job in the sequence. Each arc indicates its label
and immediate cost (the latter in parentheses). Each r–t path encodes a fea-
sible schedule, and any shortest (minimum-cost) r–t path indicates an optimal
solution of the problem.

When a problem is formulated recursively, a simple top-down compilation
procedure yields a decision diagram that represents the problem. A general
recursive formulation can be written

hj(Sj) = min
xj∈Xj(Sj)

{
cj(Sj , xj) + hj+1

(
φj(Sj , xj)

)}
(1)

Here, Sj is the state in stage j of the recursion, Xj(Sj) is the set of possible
controls (values of xj) in state Sj , φj is the transition function in stage j, and
cj(Sj , xj) is the immediate cost of control xj in state Sj . We assume there is
single initial state S1 and a single final state Sn+1, so that hn+1(Sn+1) = 0 and

x1

x2

x3

r

1(0)
2(0)

3(0)

2(2) 3(0) 1(1)
3(0)

2(2) 1(2)

t

3(2)

2(4)

3(2)

1(3)

2(5)

Fig. 1. Decision diagram for the job sequencing instance of Table 1.



Job Sequencing Bounds from Decision Diagrams 5

x1

x2

x3

r

{}0(3)

{1}3(4) {2}3(3) {3}3(5)

1(0)
2(0)

3(0)

{12}5(2) {13}5(4) {12}5(2) {23}5(3) {13}6(5)

2(2) 3(0) 1(1)
3(0)

2(2) 1(2)

t

3(2)

2(4)

3(3)
1(3)

2(5)

Fig. 2. Decision diagram, with states and minimum costs-to-go, for the job sequencing
instance of Table 1.

φn(Sn, xn) = Sn+1 for all states Sn and controls xn ∈ Xn(Sn). The quantity
hj(Sj) is the cost-to-go for state Sj in stage j, and an optimal solution has value
h1(r).

In the job sequencing problem, the state Sj is the tuple (Vj , fj), where Vj is
the set of jobs scheduled so far, and fj is the finish time of the last job scheduled.
Thus the initial state is r = (∅, 0), and Xj(Sj) is {1, . . . , n} \ Vj . The transition
function φj(Sj , xj) is given by

φj
(
(Vj , fj), xj

)
=
(
Vj ∪ {xj}, max{rxj , fj}+ pxj (Vj)

)
Note that the processing time pxj

(Vj) depends on the current state Vj as well as
the control xj . The immediate cost cj((Vj , fj), xj) is the tardiness that results
from scheduling job xj in state (Vj , fj), namely (max{rxj , fj}+pxj (Vj)−dxj )+,
where α+ = max{0, α}.

We recursively construct a decision diagram D for the problem by associating
a state with each node of D. The initial state S1 is associated with the root node
t and the final state Sn+1 with the terminal node t. If state Sj is associated with
node u in layer j, then for each vj ∈ Xj(S) we generate an arc with label vj
leaving u. The arc terminates at a node associated with state φj(S, vi). Nodes
on a given layer are identified when they are associated with the same state.

The process is illustrated for the job sequencing example in Fig. 2. Each
node is labeled by its state (Vj , fi), followed (in parentheses) by the minimum
cost-to-go at the node. The cost-to-go at the terminus t is zero.

4 Relaxed Decision Diagrams

A weighted decision diagram D′ is a relaxation of diagram D when D′ represents
every solution in D with equal or smaller cost, and perhaps other solutions
as well. To make this more precise, suppose layers 1, . . . , n of both D and



6 J. N. Hooker

D′ correspond to variables x1, . . . , xn with domains X1, . . . , Xn. Then D′ is
a relaxation of D if every assignment to x represented by an r–t path P in D
is represented by an r–t path in D′ with length no greater than that of P . The
shortest path length in D′ is a lower bound on the optimal value of the problem
represented by D. We will refer to a diagram that has not been relaxed as exact.

We can construct a relaxed decision diagram by top-down compilation, again
based on the recursive model (1). The procedure is as before, except that rather
than simply identify nodes in each layer that are associated with the same states,
we may also merge some nodes. That is, we may identify some nodes that are
associated with different states. The object is to keep the width of the diagram
(the maximum number of nodes in a layer) within a predetermined bound W .
When we merge nodes with states S and T , we associate a state S ⊕ T with the
resulting node. The operator ⊕ is chosen so as to yield a valid relaxation of the
given recursion.

It is frequently necessary to introduce additional state variables to define a
suitable merger operation [9], and this is the case in the job sequencing example.
The state at a node will consist of (V,U, f), where V and f are as before, and
U contains the jobs that occur along some path from the root. The processing
time pxj

(U) of a job xj depends on the jobs in U . The transition function is

φj
(
(V,U, f), xj

)
=
(
V ∪ {xj}, U ∪ {xj},max{rxj , f}+ pxj (U)

)
and the immediate cost is cj((V,U, f), xj) = (max{rxj , f} + pxj (U) − dxj )+.
Merging states (V,U, f) and (V ′, U ′, f ′) results in state (V ∩V ′, U∪U ′,min{f, f ′}).
We will see in the next section that this merger operation results in a valid
relaxation.

The merger operation is illustrated in Fig. 3, which is the result of merging
states ({1, 2}, 5) and ({2, 3}, 5) in layer 3 of Fig. 2. The expanded states (V,U, f)
are shown at each node, followed by the minimum cost-to-go in parentheses. The
shortest path now has cost 2, which is a lower bound on the optimal cost of 3 in
Fig. 2.

x1

x2

x3

r

{}{}0(2)

{1}{1}3(4) {2}{2}3(2) {3}{3}3(4)

1(0)
2(0)

3(0)

{12}{12}5(2) {13}{13}5(4) {2}{123}5(2) {13}{13}6(5)

2(2) 3(0) 1(1)

3(0)

2(2) 1(2)

t

3(2)

2(4)
3(2)

1(3)

2(5)

Fig. 3. A relaxation of the decision diagram in Fig. 2.



Job Sequencing Bounds from Decision Diagrams 7

5 Conditions for Node Merger

We now develop general sufficient conditions under which node merger results
in a relaxed decision diagram. Such conditions have apparently not be explicitly
stated in the literature. It is shown in [19] that it suffices for the merged state
to be a union of the states merged, but it is not useful to represent the merged
state as a union of states. The merged state must be given in terms of the state
variables in the states merged, so that the construction of the relaxed diagram
can proceed with the same transition function and immediate cost function as
at other nodes.

We will say that a state S′ in layer j relaxes a state S in layer j when (a) all
feasible controls in state S are feasible in state S′, and (b) the immediate cost
of any given feasible control in S is no less than its immediate cost in S′. That
is, Xj(S) ⊆ Xj(S

′), and cj(S, xj) ≥ cj(S
′, xj) for all xj ∈ Xj(S). Then node

merger results in a valid relaxation when two conditions are satisfied. One is a
condition on the transition function generally: when one state relaxes another,
this must continue to hold when the same control is applied to both states. That
is,

(C1) If state S′ relaxes state S, then given any control v that is feasible in S,
φ(S′, v) relaxes φ(S, v).

The second condition places a requirement on the merger operation specifically.
Namely, when two states are merged, the resulting state relaxes both of the
states that are merged.

(C2) S ⊕ T relaxes both S and T .

We can now prove the relevant theorem. Let c(P ) be the cost (length) of path
P in a decision diagram. It is also convenient to let D′k be the first k layers of
the relaxed diagram D′ obtained during top-down compilation, but just before
identifying and merging nodes in layer k. Thus D′n+1 = D′.

Theorem 1. If conditions (C1) and (C2) are satisfied, the merger of nodes with
states S and T within a diagram D results in a valid relaxation of D.

Proof. Let D be the exact decision diagram that results from top-down
compilation, and let D′ be the diagram that results from top-down compilation
with node merger. It suffices to show claim (Hk) inductively for k = 1, . . . , n+1:

(Hk) Consider any path P from r to any u in layer k of D. Then D′k contains a
path P ′, from r to a node u′ in layer k, that represents the same assignment
to (x1, . . . , xk−1). Furthermore c(P ) ≥ c(P ′), and the state S′ at u′ relaxes
the state S at u.

Claim (H1) is trivially true. We therefore suppose (Hk) is true and show (Hk+1).
Consider a path P̄ from r to ū in layer k + 1 of D. We must show that
D′k+1 contains a path P̄ ′, from r to ū′, that represents the same assignment



8 J. N. Hooker

to (x1, . . . , xk). Furthermore, we must show that c(P̄ ) ≥ c(P̄ ′), and that the
state S̄′ at ū′ relaxes the state S̄ at ū.

Let P be the portion of path P̄ that extends from r to a node u in layer k
of D. By the induction hypothesis (Hk), D′k contains a path P ′, terminating at
some node u′ in layer k, that represents the same assignment to (x1, . . . , xk−1).
Now D′k+1 is formed by identifying and merging nodes in layer k of D′k and
generating arcs from the resulting nodes. Thus if S′ is the state at u′ in D′k, S′

is merged with zero or more other states to form a state T . If v is a control that
extends P to P̄ , then v is likewise a feasible control in state T . This is because
T relaxes S′ by condition (C2), and S′ relaxes S by (Hk), which implies that T
relaxes S. Now we can let P̄ ′ be the path in D′k+1 that results from extending
P ′ at state T with control v. To see that c(P̄ ) ≥ c(P̄ ′), note that

c(P̄ ) = c(P ) + ck(S, v) ≥ c(P ′) + ck(S′, v) ≥ c(P ′) + ck(T, v) = c(P̄ ′)

where the first inequality is due to (Hk), and the second inequality is due to
condition (C2). To show that S̄′ relaxes S̄, we note again that T relaxes S. This
and condition (C1) imply that S̄′ relaxes S̄, as desired. �

The merger operation defined earlier for the job sequencing problem satisfies
conditions (C1) and (C2). To see that (C1) is satisfied, suppose (V ′, U ′, f ′)
relaxes (V,U, F ), which means that V ′ ⊆ V , U ′ ⊇ U , and f ′ ≤ f . Then if control
v is applied to either state, we have V ′ ∪{v} ⊆ V ∪{v} and U ′ ∪{v} ⊇ U ∪{v}.
Also

min{rv, f ′}+ pv(U ′) ≤ min{rv, f}+ pv(U)

because f ′ ≤ f and pv(U ′) ≤ pv(U), the latter due to the fact that U ′ ⊇ U . So
φj((V

′, U ′, f ′), v) relaxes φj((V,U, f), v), and (C1) follows. To show (C2), recall
that (V,U, f) and (V ′, U ′, f ′) are merged to form (V ∩ V ′, U ∪ U ′,min{f, f ′}).
The merger relaxes the two states that are merged because V ∩ V ′ ⊆ V, V ′,
U ∪ U ′ ⊇ U,U ′, and min{f, f ′} ≤ f, f ′.

6 Merging Heuristics

We now address the question of which nodes to merge in a given layer so as
to reduce the width to W . The merger strategy should be designed so that the
diagram remains exact, to the extent possible, along paths that are likely to
be optimal. Merging nodes in the remainder of the diagram will not affect the
optimal solution and therefore the bound. The merger strategy is particularly
important when processing times are state-dependent, because the additional
state variable U results in smaller values for the state variable f and therefore
shorter paths in the diagram, yielding a weaker bound.

We therefore need some indication of whether a given node is likely to lie
on a shortest path. The most readily available indication is the state variable
f , since it represents the finish time of the most recent job processed. If f is
large, then the cost of a path through the node is more likely to be large. We



Job Sequencing Bounds from Decision Diagrams 9

can merge two nodes with the largest values of f and repeat the process until
the width is reduced to W . We will refer to this as the finish time heuristic.

Another possibility is to compute the shortest path to a given node from the
root. If the shortest path is already long, it is likely to be still longer by the time
it reaches the terminus. We therefore merge nodes to which the shortest path
from the root is longest. We will refer to this as the shortest path heuristic.

In the next section, we compare the effectiveness of these heuristic against a
control heuristic that consists of randomly selecting nodes to merge.

7 Computational Experiments

The aim of the computational experiments is to determine how the quality of the
bound depends on the width of the relaxed decision diagram. To our knowledge,
there are no benchmark sets for sequence-dependent processing times, and so we
ran tests on randomly generated problem instances. A meaningful assessment
of the bound quality requires that we be able to solve the instances exactly,
because the optimal values vary widely from zero to a rather large number. We
must therefore generate instances that are small enough to be solved exactly in
reasonable time.

Dynamic programming is the only viable method for exact solution of prob-
lems with general state dependence, including problems with sequence-dependent
processing times. Since the state space becomes impracticably large for instances
with more than 14 jobs, we generated and solved instances with 12 and 14
jobs. We found that the results are quite consistent over these instances, which
suggests that the pattern may continue for larger instances.

Instances are generated as follows. The normal processing time pj is drawn
uniformly from the interval [pmin, pmax]. To make the processing time state
dependent, we reduce it to pj/2 when j is even and job j − 1 has already been
processed. The release time is drawn uniformly from [0, npmin/2], where n is
the number of jobs. The due date is dj = rj + pj + slackj , where slackj is
drawn uniformly from [kpmin, kpmax]. We used k = 4 for 12 jobs and k = 5
for 14 jobs to obtain minimum tardiness values that are generally positive
but not unrealistically large. We also set [pmin, pmax] = [10, 16]. The first 5
random instances are used for each problem size, after discarding those with
zero minimum tardiness, because they provide no information about the quality
of the bound.

Figures 4 and 5 show the results, using the finish time heuristic. The bound
is plotted against the width of the relaxed diagram, where the latter is on a
logarithmic scale. The bounds are sampled at 10 points per factor of 10 for 12
jobs, and 20 points per factor of 10 for 14 jobs. The far right end of each curve
represents an exact decision diagram for the instance, which is equivalent to the
state transition graph for the dynamic programming formulation of the problem.
Selected computation times are shown on the curves. The computation time for
a given width is very similar across all instances of a given size. The computation



10 J. N. Hooker

0

10

20

30

40

50

60

70

80

10 100 1000 10000 100000

B
o

u
n

d

Maximum width

41 s

1.0 s

3.2 s 27 s

2.4 s

1.2 s 30 s

4.3 s 46 s

0.4 s 39 s

1.4 s

Fig. 4. 12-job instances: relaxation bound versus decision diagram width, up to the
width of an exact diagram. Selected computation times are shown.

time for the exact diagram indicates the time necessary to solve the problem by
dynamic programming.

The curves follow a different pattern than those reported for other types of
problems, which tend to approach the optimal value asympotically [7]. Once the
curves begin to rise above zero, they increase rapidly and level off at the optimal
value when the width is less than one-tenth the width of an exact diagram.
Specifically, when there are 12 jobs, the optimal value is achieved for diagrams
that are between 1/32 and 1/15 the width of an exact diagram, and when there
are 14 jobs, between 1/26 and 1/10 the width of an exact diagram. On the other
hand, the bound does not rise above zero until the width of the relaxed diagram
is roughly 1/1000 to 1/25 the width of an exact diagram. This indicates that
diagrams of a fixed maximum width, such as 1000 or 10000, cease to provide
useful bounds as the instances scale up. The curves are not always monotonic
because the the bound depends on the merging heuristic, which may happen to
perform better for a smaller width than a slightly larger one.

Figure 6 compares the performance of three merging heuristics for one of the
12-job instances, namely the finish time, shortest path, and random selection
heuristics. The choice of heuristic is clearly key, as the finish time heuristic is
vastly superior to the others. Examination of the shortest paths from the root
at various nodes reveals why the shortest path heuristic fails. The shortest path
length tends to remain at zero in the upper layers of the diagram, which means
there is no guidance for node merger, resulting in bad merger decisions that



Job Sequencing Bounds from Decision Diagrams 11

0

10

20

30

40

50

60

100 1000 10000 100000

B
o

u
n

d

Maximum width

142 s 1297 s

17 s

39 s 956 s

72 s 1568 s

136 s 1003 s

56 s

932 s

Fig. 5. 14-job instances: relaxation bound versus decision diagram width, up to the
width of an exact diagram. Selected computation times are shown.

propagate through the remainder of the diagram. Random merger is even worse,
resulting in no useful bounds until the diagram is nearly exact.

8 Conclusions

We undertook a preliminary investigation of the potential of node merger as a
relaxation mechanism for dynamic programming problems, particularly those for
which no practical relaxation method exists. We focused on the job sequencing
problem with time windows and state-dependent processing times, because it
has no known mixed integer programming or other model that yields a useful
relaxation.

We first proved two conditions that are jointly sufficient for a node merger
operation to yield a valid relaxation, one a condition on the transition function of
the dynamic programming model, and one a condition on the merger operation
itself. We then formulated a merger rule for the job sequencing problem and
used the conditions to show that it results in a relaxed diagram.

Computational testing revealed that relaxed diagrams for this problem have
different characteristics than have been reported for other types of problems.
The relaxed diagram yields the optimal value when its width is a small fraction
of the width of an exact diagram. This allows a relaxed diagram to prove the



12 J. N. Hooker

0

10

20

30

40

50

60

70

80

10 100 1000 10000

B
o

u
n

d

Maximum width

Finish time heuristic

Shortest path heuristic

Random merge

Fig. 6. Comparison of bound quality of three node merging heuristics on a 12-job
instance.

optimality of a solution obtained heuristically, using much less computation than
would otherwise be necessary.

On the other hand, diagrams of a fixed maximum width cease to provide
useful bounds as the instances scale up. A intriguing line of research would be to
use Lagrangian methods to strengthen the bounds provided by smaller diagrams.
These methods adjust the arc costs in the relaxed diagram to exclude poor
solutions while retaining a valid bound [10]. They have been used successfully in
other contexts and could prove a valuable enhancement of node merger for the
relaxation of dynamic programming models.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27,
509–516 (1978)

2. Andersen, H.R., Hadžić, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) Principles and Practice of
Constraint Programming (CP 2007). LNCS, vol. 4741, pp. 118–132. Springer (2007)

3. Baldacci, R., Mingozzi, A., Roberti, R.: New state-space relaxations for solving the
traveling salesman problem with time windows. INFORMS Journal on Computing
24(3), 356–371 (Jul 2012)

4. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and
cut framework. In: Nikoletseas, S. (ed.) Experimental and Efficient Algorithms,
Proceedings of the 4th International Workshop on Efficient and Experimental
Algorithms (WEA 05). LNCS, vol. 3503, pp. 452–463. Springer (2005)

5. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Pro-
ceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX).
pp. 158–165. SIAM (2007)



Job Sequencing Bounds from Decision Diagrams 13

6. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: Jussien, N.,
Petit, T. (eds.) CPAIOR Proeeedings. LNCS, vol. 7298, pp. 34–49. Springer (2012)

7. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS Journal on Computing 26, 253–268
(2013)

8. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for
Optimization. Springer (2016)

9. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with binary decision diagrams. INFORMS Journal on Computing 28, 47–66 (2016)

10. Bergman, D., Ciré, A.A., van Hoeve, W.J.: Lagrangian bounds from decision
diagrams. Constraints 20, 346–361 (2015)

11. Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Proceedings of CPAIOR. LNCS, vol. 6697, pp.
20–35 (2011)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

13. Christofides, N., Mingozzi, A., Toth, P.: State-space relaxation procedures for the
computation of bounds to routing problems. Networks 11(2), 145–164 (1981)

14. Ciré, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Operations Research 61, 1411–1428 (2013)

15. Hadžić, T., Hooker, J.N.: Postoptimality analysis for integer programming using
binary decision diagrams. Tech. rep., Carnegie Mellon University (2006)

16. Hadžić, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 program-
ming. In: Loute, E., Wolsey, L. (eds.) CPAIOR 2007 Proceedings. LNCS, vol. 4510,
pp. 84–98. Springer (2007)

17. Hadžić, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation
of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) Principles
and Practice of Constraint Programming (CP 2008). LNCS, vol. 5202, pp. 448–462.
Springer (2008)

18. Hadžić, T., Hooker, J.N., Tiedemann, P.: Propagating separable equalities in an
MDD store. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008 Proceedings. Lecture
Notes in Computer Science, vol. 5015, pp. 318–322. Springer (2008)

19. Hoda, S., van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) Principles and Practices of Constraint
Programming (CP 2010). LNCS, vol. 6308, pp. 266–280. Springer (2010)

20. Hooker, J.N.: Discrete global optimization with binary decision diagrams. In:
GICOLAG 2006. Vienna, Austria (December 2006)

21. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C.,
Sellmann, M. (eds.) CPAIOR 2013 Proceedings. LNCS, vol. 7874, pp. 94–110.
Springer (2013)

22. Hu, A.J.: Techniques for efficient formal verification using binary decision diagrams.
Thesis CS-TR-95-1561, Stanford University, Department of Computer Science (Dec
1995)

23. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38, 985–999 (1959)

24. Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining
frequent subsequences. Knowl. Inf. Syst 24(2), 235–268 (2010)

25. Mingozzi, A.: State space relaxation and search strategies in dynamic program-
ming. In: Proceedings of Abstraction, Reformulation, and Approximation. Lecture
Notes in Computer Science, vol. 2371, pp. 51–51. Springer (2002)



14 J. N. Hooker

26. Righini, G., Salani, M.: New dynamic programming algorithms for the resource
constrained shortest path problem. Networks 51, 155–170 (2008)

27. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. SIAM monographs on discrete mathematics and applications, Society
for Industrial and Applied Mathematics (2000)


